Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120660123
cg.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 02:04
Size
5 KB
Mime Type
text/x-c
Expires
Tue, Jul 8, 02:04 (2 d)
Engine
blob
Format
Raw Data
Handle
27216376
Attached To
R11201 phpc-2021
cg.cc
View Options
#include "cg.hh"
#include <algorithm>
#include <cblas.h>
#include <cmath>
#include <iostream>
const double NEARZERO = 1.0e-14;
const bool DEBUG = false;
/*
cgsolver solves the linear equation A*x = b where A is
of size m x n
Code based on MATLAB code (from wikipedia ;-) ):
function x = conjgrad(A, b, x)
r = b - A * x;
p = r;
rsold = r' * r;
for i = 1:length(b)
Ap = A * p;
alpha = rsold / (p' * Ap);
x = x + alpha * p;
r = r - alpha * Ap;
rsnew = r' * r;
if sqrt(rsnew) < 1e-10
break;
end
p = r + (rsnew / rsold) * p;
rsold = rsnew;
end
end
*/
void CGSolver::solve(std::vector<double> & x) {
std::vector<double> r(m_n);
std::vector<double> p(m_n);
std::vector<double> Ap(m_n);
std::vector<double> tmp(m_n);
// r = b - A * x;
std::fill_n(Ap.begin(), Ap.size(), 0.);
cblas_dgemv(CblasRowMajor, CblasNoTrans, m_m, m_n, 1., m_A.data(), m_n,
x.data(), 1, 0., Ap.data(), 1);
r = m_b;
cblas_daxpy(m_n, -1., Ap.data(), 1, r.data(), 1);
// p = r;
p = r;
// rsold = r' * r;
auto rsold = cblas_ddot(m_n, r.data(), 1, p.data(), 1);
// for i = 1:length(b)
int k = 0;
for (; k < m_n; ++k) {
// Ap = A * p;
std::fill_n(Ap.begin(), Ap.size(), 0.);
cblas_dgemv(CblasRowMajor, CblasNoTrans, m_m, m_n, 1., m_A.data(), m_n,
p.data(), 1, 0., Ap.data(), 1);
// alpha = rsold / (p' * Ap);
auto alpha = rsold / std::max(cblas_ddot(m_n, p.data(), 1, Ap.data(), 1),
rsold * NEARZERO);
// x = x + alpha * p;
cblas_daxpy(m_n, alpha, p.data(), 1, x.data(), 1);
// r = r - alpha * Ap;
cblas_daxpy(m_n, -alpha, Ap.data(), 1, r.data(), 1);
// rsnew = r' * r;
auto rsnew = cblas_ddot(m_n, r.data(), 1, r.data(), 1);
// if sqrt(rsnew) < 1e-10
// break;
if (std::sqrt(rsnew) < m_tolerance)
break; // Convergence test
auto beta = rsnew / rsold;
// p = r + (rsnew / rsold) * p;
tmp = r;
cblas_daxpy(m_n, beta, p.data(), 1, tmp.data(), 1);
p = tmp;
// rsold = rsnew;
rsold = rsnew;
if (DEBUG) {
std::cout << "\t[STEP " << k << "] residual = " << std::scientific
<< std::sqrt(rsold) << "\r" << std::flush;
}
}
if (DEBUG) {
std::fill_n(r.begin(), r.size(), 0.);
cblas_dgemv(CblasRowMajor, CblasNoTrans, m_m, m_n, 1., m_A.data(), m_n,
x.data(), 1, 0., r.data(), 1);
cblas_daxpy(m_n, -1., m_b.data(), 1, r.data(), 1);
auto res = std::sqrt(cblas_ddot(m_n, r.data(), 1, r.data(), 1)) /
std::sqrt(cblas_ddot(m_n, m_b.data(), 1, m_b.data(), 1));
auto nx = std::sqrt(cblas_ddot(m_n, x.data(), 1, x.data(), 1));
std::cout << "\t[STEP " << k << "] residual = " << std::scientific
<< std::sqrt(rsold) << ", ||x|| = " << nx
<< ", ||Ax - b||/||b|| = " << res << std::endl;
}
}
void CGSolver::read_matrix(const std::string & filename) {
m_A.read(filename);
m_m = m_A.m();
m_n = m_A.n();
}
/*
Sparse version of the cg solver
*/
void CGSolverSparse::solve(std::vector<double> & x) {
std::vector<double> r(m_n);
std::vector<double> p(m_n);
std::vector<double> Ap(m_n);
std::vector<double> tmp(m_n);
// r = b - A * x;
m_A.mat_vec(x, Ap);
r = m_b;
cblas_daxpy(m_n, -1., Ap.data(), 1, r.data(), 1);
// p = r;
p = r;
// rsold = r' * r;
auto rsold = cblas_ddot(m_n, r.data(), 1, r.data(), 1);
// for i = 1:length(b)
int k = 0;
for (; k < m_n; ++k) {
// Ap = A * p;
m_A.mat_vec(p, Ap);
// alpha = rsold / (p' * Ap);
auto alpha = rsold / std::max(cblas_ddot(m_n, p.data(), 1, Ap.data(), 1),
rsold * NEARZERO);
// x = x + alpha * p;
cblas_daxpy(m_n, alpha, p.data(), 1, x.data(), 1);
// r = r - alpha * Ap;
cblas_daxpy(m_n, -alpha, Ap.data(), 1, r.data(), 1);
// rsnew = r' * r;
auto rsnew = cblas_ddot(m_n, r.data(), 1, r.data(), 1);
// if sqrt(rsnew) < 1e-10
// break;
if (std::sqrt(rsnew) < m_tolerance)
break; // Convergence test
auto beta = rsnew / rsold;
// p = r + (rsnew / rsold) * p;
tmp = r;
cblas_daxpy(m_n, beta, p.data(), 1, tmp.data(), 1);
p = tmp;
// rsold = rsnew;
rsold = rsnew;
if (DEBUG) {
std::cout << "\t[STEP " << k << "] residual = " << std::scientific
<< std::sqrt(rsold) << "\r" << std::flush;
}
}
if (DEBUG) {
m_A.mat_vec(x, r);
cblas_daxpy(m_n, -1., m_b.data(), 1, r.data(), 1);
auto res = std::sqrt(cblas_ddot(m_n, r.data(), 1, r.data(), 1)) /
std::sqrt(cblas_ddot(m_n, m_b.data(), 1, m_b.data(), 1));
auto nx = std::sqrt(cblas_ddot(m_n, x.data(), 1, x.data(), 1));
std::cout << "\t[STEP " << k << "] residual = " << std::scientific
<< std::sqrt(rsold) << ", ||x|| = " << nx
<< ", ||Ax - b||/||b|| = " << res << std::endl;
}
}
void CGSolverSparse::read_matrix(const std::string & filename) {
m_A.read(filename);
m_m = m_A.m();
m_n = m_A.n();
}
/*
Initialization of the source term b
*/
void Solver::init_source_term(double h) {
m_b.resize(m_n);
for (int i = 0; i < m_n; i++) {
m_b[i] = -2. * i * M_PI * M_PI * std::sin(10. * M_PI * i * h) *
std::sin(10. * M_PI * i * h);
}
}
Event Timeline
Log In to Comment