
Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

PROJECT PROPOSAL PHPC-2018

A High Performance Implementation of Shallow Water Wave Equation
with a finite volume solver : Tsunamis Simulation at Scale

Principal investigator (PI) Arnaud Pannatier

Institution EPFL-SCITAS

Address Station 1, CH-1015 LAUSANNE

Involved researchers Only PI

Date of submission May 16, 2018

Expected end of project July 6, 2018

Target machine Mount Everest

Proposed acronym TSUNAMI

Abstract

This project proposes a way to increase the performance of a sequential code using
classical parallelism technic. It is based on a Matlab code of Nicolas Richart that simulates
the evolution of a tsunami. The application is coded in C++ and will use the industrial
standards MPI and OpenMP. The purpose of this report is to describe the state of the
current project and to describe how the sequential code will parallelized.

1 Scientific Background

A parallel iterative finite difference method for solving the 2D elliptic PDE Poisson’s equation
on a distributed system using Message Passing Interface (MPI) and OpenMP is presented. This
method is based on a domain decomposition where the global 2D domain is divided into mul-
tiple sub-domains using horizontal axis. The number of subdomains is specified by the number
of processes. The Shallow Water Wave Equation is solved by explicit iterative schemes. The
global error is shared by all processes.

1.1 Introducing the Model

The shallow water wave equation is a non-linear hyperbolic system of coupled partial differential
equations often used to model various wave phenomenons. Simulation of ocean waves, river
flows, hydraulic engineering and atmospheric modeling are among the many areas of application.
The researcher has used the two dimensional version of the equations along with a right hand
side source term as his model

ht + (hu)x + (hv)y = 0
(hu)t + (hu2 + 1

2gh
2)x + (huv)y = −ghzx

(hv)t + (huv)x + (hv2 + 1
2gh

2)y = −ghzy
(1)

In the above, h := h(x, y, t) denotes water height, u := u(x, y, t) and v := v(x, y, t) wa-
ter velocity in x and y direction respectively, z := z(x, y) topography and g= 9.82m/s2 the
gravitational constant.

1



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

1.2 Introducing the Numerical Scheme

Finite volume schemes are a popular approach for computing an approximate solution to
hyperbolic equations as the underlying physics is represented in a natural way. Let Ii,j =[
xi−1, xi+1

]
×
[
yj−1, yj+1

]
define a structured rectangular uniform mesh. In a finite-volume scheme, one seeks to find

the cell average q̄i,j(tn) that approximates q(xi, yj , tn) at every cell Ii,j for a given time-step tn
in the sense

q̄i,j(tn) =
1

∆x∆y

∫
Ii,j

q(xi, yj , tn)dydx (2)

The researcher has used the Lax-Friedrichs method to discretize the problem. The method
is explicit meaning that the solution q̄n+1

i,j for all i, j at timestep tn+1 may be computed directly
from the solution at the previous timestep q̄ni,j without solving any system of equations using
the following three equations

h̄n+1
i,j =

1

4
[h̄ni,j−1 + h̄ni,j+1 + h̄ni−1,j + h̄ni+1,j ] (3)

+
∆tn

2∆x
[h̄u

n
i,j−1 − h̄u

n
i,j+1 + (hv)ni,j−1 − (hv)ni,j+1] (4)

h̄u
n+1
i,j =

1

4
[h̄u

n
i,j−1 + h̄u

n
i,j+1 + h̄u

n
i−1,j + h̄u

n
i+1,j ]−∆tnghn+1∂x(z) (5)

+
∆tn

2∆x
[
(h̄u

n
i,j−1)2

hni,j−1

+
1

2
g(h)ni,j−1 −

(h̄u
n
i,j+1)2

hni,j+1

− 1

2
gh̄ni,j+1] (6)

h̄v
n+1
i,j is calculated in a similar manner.

After each simulation time-step, we need to compute a new time-step length. This is needed
to make sure that the CFL condition is satisfied. The time-step ∆tn

∆tn = min
i,j

∆x√
2νni,j

(7)

is found computing first νn using

νni,j =

√√√√max
i,j

(∣∣∣∣∣ h̄u
n
i,j

h̄ni,j
+ gh̄ni,j

∣∣∣∣∣ ,
∣∣∣∣∣ h̄u

n
i,j

h̄ni,j
− gh̄ni,j

∣∣∣∣∣
)2

+ max
i,j

(∣∣∣∣∣ h̄v
n
i,j

h̄ni,j
+ gh̄ni,j

∣∣∣∣∣ ,
∣∣∣∣∣ h̄v

n
i,j

h̄ni,j
− gh̄ni,j

∣∣∣∣∣
)2

(8)

After computing a new time-step q̄n+1
i,j , cells that are below a certain water threshold are

made inactive :

h̄n+1
i,i ≤ 0→ h̄n+1

i,i = 10−5 (9)

h̄n+1
i,i ≤ 10−4 → hun+1

i,i = hvn+1
i,i = 0 (10)

2 Implementations

The application is implemented in C++. We will investigate two implementations of the same
solver :

• A shared memory version using the OpenMP paradigm [1]

2



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

Figure 1: Simulation of a Tsunami with N = 4001, Tend = 0.2

• A distributed memory version using the MPI library [2]

The code has been be fully debugged using the gdb debugger. The Valgrind tool has been
used to remove all the memory leaks. [Tab.] The profiling tool gprof has been applied on the
sequential and the parallel case.[Tab.]

2.1 Description of the Code

The code is arranged in the following way. The algorithm will compute the evolution of the
height of the wave H(x, y), based on the knowledge of the topography and the evolution of the
speed of the wave in the direction x and y. In order to start the computation, the algorithm
first read the initial conditions for the different values (H,HU ,HV , Zdx, Zdy) in binary files.
The duration of the evolution Tend is specified by the user. While this time is not reached,
the algorithm will compute the next variable time step and the evolution of the height and the
speed : H,HU ,HV . The update of the variables only needs information of the direct neighbor
of a point (x,y). When the simulation is over the height of the wave at the final time step is
stored in a file.

2.2 Parallelization

2.2.1 Optimization on one core : Vectorization

TODO : BLABLABLA

2.2.2 MPI implementation

In order to translate the sequential conde in a parallel fashion, the following design is used :
as C++ is a row major language, the grid is splited between process in a block of N

P complete

3



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

Start


Read Grids

Compute next dt

Compute H, HU, HV for the 
next time steps

if T < TEnd

T = T + dt

Write Grids

End


Figure 2: Flowchart of the sequential program

rows [FIG. 3]. Some other design have been analyzed but seemed less appropriate for this case
: splitting using complete columns (the translated approach) was not a good solution as the
langage uses a row-major convention. Distributing the data into squares was also envisaged,
but again as the langage that is used is row-major it is preferable for a process to have most
of its points arranged in row in order to use vectorization, so this alternative was abandonned.
Furthermore it was more complicated to organize the ghost cells in the square architecture.
Splitting into N

P complete rows was the more natural way to implement the data distribution
and it natural to organize the ghosts cells.

Figure 3: Data distribution strategy for the MPI approach. [4]

The reader, writer and time step computation as well as the update of the height and the

4



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

Read Grids

Compute next dt

Compute H, HU, HV for 
the next time steps

if T < TEnd

T = T + dt

Write Grids

Read Grids

Compute next dt

Compute H, HU, HV for the 
next time steps

if T < TEnd

T = T + dt

Write Grids

Start


End


Read Grids

Compute next dt

Compute H, HU, HV for 
the next time steps

if T < TEnd

T = T + dt

Write Grids

AllReduce Min

Exchange Ghost Cells Exchange Ghost Cells Exchange Ghost Cells

Process #1 Process #2 Process #p

Figure 4: Flowchart of the parallel program using MPI

speed H,HU,HV are implemented.
The parallelization of the reader and writer will make use of the Parallel I/O of MPI. As

Matlab is a column-major langage and, in the contrary, C++ is a row-major language. A column-
major reader and writer have been developed in order to work with the same files.

For the parallelization of the main loop, we need first to compute at each step the next time
step and then to compute the future values of each grids H, HU , HV . Computing the next
time step implies that the max over a grid should be found. Each process will then return the
max over his subgrid and the final max will be computed at the end, this final computation will
be done on a single node. The parallelization of the update of H, HU , HV will be approached
in a similar manner. The grid will be split as before. Before and after each subgrid (except the
first one and the last one) a row of ghost cells will be added, in order to allow the computation.
Most of the code will therefore be parallelized.

3 Prior results

Translating the code from Matlab to C++ allows us to compute the solution approximately 5
times faster using vectorization. This performance will be improved drastically using parallelism
technic.

The results were compared with Matlab for the case n = 2001 and n = 4001. It is giving
the same results. Some error can be seen in the place where the height of the wave varies the
most due to numerical approximation [FIG. ] . For the case of n = 8001, no comparaison with
Matlab were done due to the too large amount of time needed to run the code on Matlab.

3.1 Strong scaling

The speed up of a precise parallelism problem depends mostly on the percentage of sequential
code that can be parallelized. In the case of this problem, most of the code can be paral-

5



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

Operation Complexity

Computation Reading O
(
N2

p

)
Compute ∆t O

(
N2

p ∗ n∆t

)
Compute H,HU,HV O

(
N2

p ∗ n∆t

)
Writing O

(
N2

p

)
Communication Reading 0

Compute ∆t O (log(p) ∗ n∆t)
Compute H,HU,HV O (N ∗ n∆t)

Writing 0

Table 1: Computation and communication complexities, p is the number of process, N is the
number of points on the side of the grid, n∆t is the number of timesteps required to compute
the simulation.

Matlab [s] C++ [s]

2001x2001 1233.068 226.741
4001x4001 10625.835 2003.880

Table 2: Total time in seconds for a run on a 3.1 GHz Intel i5

lelized. A first estimation can be deduced from the profiling table for the grid 2001 × 2001
[TAB. 3]. Summing up the three main functions that can be parallelized (compute step,

compute mu and set dt and imposeTolerances) gives a value of 98.06% of code parallelizable.
The speed up is given by Amdahl’s Law :

Sp =
1

α+ 1−α
p

(11)

Where α is the fraction of non-parallelizable code, in this case 1.94%, and p is the number
of cores that is used to compute the simulation.

Computing the speed up using strong scaling for this problem gives the following curve [FIG.
7]. This theoretical result will be compared with the real one when the problem is parallelized.

3.2 Weak scaling

The weak scaling is another way to measure the speed up. The main difference with the strong
scaling is that in this case, the size of the problem can change. It is given by Gustaon’s law :

Sp = p− β(n)(p− 1) (12)

Where β(n) is the fraction of non-parallelizable code, and p is the number of cores that is
used to compute the simulation. We have the information on three different setup in the projet.
Corresponding to the grid 2001 × 2001, 4001 × 4001, 8001 × 8001. As our approach will split
the grid only by row, we can expect that the workload for each processor to increase as n for
the computation on a grid. Furthermore, adding more precision will reduce the ∆x leading to
smaller ∆t. We can expect this to increase the workload by computer in an order of n as well.
Theses hypotheses and the exact speed up will be computed in the final report.

6



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

1 2 4 8 16 32 64 128

Cores

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

Strong Scaling

Timestep : N=2000

Total time : n=2000

Timestep : N=4000

Total time : n=4000

Figure 5: Strong Scaling on Deneb2 for the case of N = 2001, 4001, 8001, the total time and
the time for a step are displayed.

4 Resources budget

This part has not been modified but will be completed for the final report

In order to fulfill the requirements of our project, we present hereafter the resource budget.

4.1 Computing Power

!! FIXME !!

4.2 Raw storage

!! FIXME !!

4.3 Grand Total

Total number of requested cores 256 - 512

Minimum total memory !! FIXME !!

Maximum total memory !! FIXME !!

Temporary disk space for a single run !! FIXME !!

Permanent disk space for the entire project !! FIXME !!

Communications Pure MPI

License own code (BSD)

Code publicly available ? Yes [5]

Library requirements MPI

Architectures where code ran Intel Xeon

7



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

1 2 4 8 16 32 64 128

Cores

40

50

60

70

80

90

100

110

120

130
140

T
im

e
 f
o
r 

a
 s

te
p
 [
m

s
]

500'000 points per core

1'000'000 points per core

2'000'000 points per core

1 2 4 8 16 32 64 128

Cores

105

106

T
o
ta

l 
T

im
e
 [
m

s
]

500'000 points per core

1'000'000 points per core

2'000'000 points per core

O(N)

Figure 6: Weak Scaling on Deneb2 for the case of 500’000, 1’000’000 and 2’000’000 of points
per core, the total time and the time for a step are displayed.

5 Scientific outcome

This work will lead to a fast implementation for simulation of Tsunamis. It will allow to do
impressive simulations without waiting too long. It will also learn to the principal investigator
how to parallelize code in a good and efficient way.

References

[1] Dagum L. and Menon R.,OpenMP: An Industry-Standard API for Shared-Memory Program-
ming, IEEE Computational Science & Engineering, Volume 5 Issue 1, pp 46-55, January
1998

[2] The MPI Forum, MPI: A Message-Passing Interface Standard, Technical Report, 1994

[3] Scientific IT and Application Support, http://scitas.epfl.ch, 2015

[4] Keller Vincent - Rezzonico Vittoria, PHPC Course - MATH-454 - EPFL, http://edu.

epfl.ch/coursebook/fr/parallel-and-high-performance-computing-MATH-454 , 2018

[5] Arnaud Pannatier Project repository on c4sciences, https://c4science.ch/source/

phpctsunamiproject/, 2018

8



Parallel computing and pthreads https://c4science.ch/source/phpctsunamiproject/

A Profiling

% cumulative self self total
time seconds seconds calls ms/call ms/call name

76.47 113.37 113.37 352 322.07 335.59 Simulation::compute step

19.19 141.82 28.45 352 80.82 80.82 Simulation::compute mu and set dt

2.40 145.37 3.55 1056 3.36 3.36 Grid::imposeTolerances

1.58 147.71 2.34 4219780580 0.00 0.0 DoubleBuffer::current

0.30 148.16 0.45 3 150.04 150.04 DoubleBuffer::DoubleBuffer

0.04 148.22 0.06 5 12.00 12.00 Reader::readGridFromFile

0.03 148.27 0.05 1056 0.05 0.05 Grid::applyBoundaryConditions

0.01 148.29 0.02 1 20.01 20.01 Reader::writeGridInFile

0.00 148.29 0.00 2115 0.00 0.00 DoubleBuffer::old

0.00 148.29 0.00 1056 0.00 0.00 DoubleBuffer::swap

Table 3: Profiling on Deneb1

9


