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I. ENTANGLEMENT CARVING.

We consider an ensemble of N spin 1/2 particles. The states of 1/2 and −1/2 are |↑⟩ and |↓⟩ respectively.
In the cavity, the states of the photon are modeled with a 2D Hilbert space spanned by the states |0⟩ if the photon

is not detected and |1⟩ if the photon is reflected.

1. We suppose that the initial state of the system is represented by the tensor product |ψS⟩ ⊗ |1⟩, where |ψS⟩ is a
generic state of the particles ensemble.

The described operation can be modeled with an operator Û , acting on the whole system. Let’s study first the
most general shape of |ψS⟩ which distinguishes all the spins pointing up and at least one of the spins pointing
up. This will make easier the application of Û on |ψS⟩ ⊗ |1⟩. Let’s consider the two extrema cases:

• all the spins are pointing down
• at least one of the spin is pointing up

If all the spins are pointing down, then
∣∣∣ψ(1)

S

〉
= |↓ ... ↓⟩. Otherwise∣∣∣ψ(2)

S

〉
= |ψS⟩ − ⟨ψS |↓ ... ↓⟩ |↓ ... ↓⟩ . (1)

The state
∣∣∣ψ(2)

S

〉
is orthogonal to |↓ ... ↓⟩, indeed

〈
ψ
(2)
S

∣∣∣↓ ... ↓〉 = 0.

The state
∣∣∣ψ(2)

S

〉
represents all the possible states with at least one spin up. Now, the state |ψS⟩ can be in a

generic superposition of
∣∣∣ψ(1)

S

〉
and

∣∣∣ψ(2)
S

〉
. Therefore we can write

|ψS⟩ = α
∣∣∣ψ(1)

S

〉
+ β

∣∣∣ψ(2)
S

〉
, with |α|2 + |β|2 = 1. (2)

Finally we apply Û on |ψS⟩ ⊗ |1⟩. If all the spins point down, the photon is not detected. If at least one of the
spin is pointing up, then the photon is detected. Therefore

Û (|ψS⟩ ⊗ |1⟩) = αÛ
(∣∣∣ψ(1)

S

〉
⊗ |1⟩

)
+ βÛ

(∣∣∣ψ(2)
S

〉
⊗ |1⟩

)
= α

∣∣∣ψ(1)
S

〉
⊗ |0⟩+ β

∣∣∣ψ(2)
S

〉
⊗ |1⟩ .

(3)

This describes the action of the operator Û on the whole system |ψS⟩ ⊗ |1⟩.
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2. Now we compute the measurement operators acting on the spin system. The whole system consists in the spin
system plus the photon, the last one can be viewed as an environment. The "time evolution" of the whole
system is therefore generated by the operator Û . Let’s be ρ̂ the initial density matrix of the system. The final
density matrix must be ρ̂′ = Û ρ̂Û†.

Now, the initial density matrix can be recast as ρ̂ = ρ̂S⊗|1⟩ ⟨1| since we know that the environment is initialized
in the state |1⟩.

Now the goal is to rewrite the evolved density matrix of the spin system in terms of a Kraus Operator Sum
Representation (OSR). Indeed, by virtue of Kraus theorem, we know that

ρ̂′S =
∑
µ

M̂µρ̂SM̂
†
µ, (4)

where M̂µ are the Kraus meausrement operators. Let’s figure out those operators. The evolved density matrix
for the system, ρ̂′S can be obtained tracing out the environment from the total density matrix ρ̂′. Then

ρ̂′S = ⟨0| Û ρ̂Û† |0⟩+ ⟨1| Û ρ̂Û† |1⟩ = ⟨0| (Û ρ̂S ⊗ |1⟩ ⟨1| Û†) |0⟩+ ⟨1| (Û ρ̂S ⊗ |1⟩ ⟨1| Û†) |1⟩

= ⟨0| Û |1⟩ ρ̂S(⟨0| Û |1⟩)† + ⟨1| Û |1⟩ ρ̂S(⟨1| Û |1⟩)† = M̂0ρ̂SM̂
†
0 + M̂1ρ̂SM̂

†
1

(5)

which is the Kraus OSR. Now we write explicitly M̂0 and M̂1.

M̂0 = ⟨0| Û |1⟩ = |↓ ... ↓⟩ ⟨↓ ... ↓| , (6)

indeed the action of Û on |1⟩ generates a superposition of |0⟩ and |1⟩, but only the part proportional to |0⟩
remains after the application of ⟨0|. Due to point 1., this part must coincide with |↓ ... ↓⟩ ⟨↓ ... ↓|.

We have also M̂0 + M̂1 = 1. Then

M̂1 = 1− M̂0 = 1− |↓ ... ↓⟩ ⟨↓ ... ↓| . (7)

The measurements are manifestly projective.

3. Now we consider |↓ ... ↓⟩ as the initial state of the system. After the global rotation by an angle θ in y direction
the spin are in the final state |θ⟩.

The global rotation can be modeled with the operator

R̂y = e−iθĴy , with Ĵy =

N∑
i=1

σ̂y
i

2
. (8)

Therefore

|θ⟩ = e−iθĴy |↓ ... ↓⟩ = e−iθ
∑N

i=1

σ̂
y
i
2 |↓⟩1 ⊗ ...⊗ |↓⟩N =

N⊗
i=1

e−
i
2 θσ̂

y
i |↓⟩i , (9)

which is a product state, and therefore not entangled. We can write in a more expressive form |θ⟩ using the
Pauli formula

e−
i
2 θσ̂

y
i = cos(θ/2)1− i sin(θ/2)σy

i , (10)

obtaining

|θ⟩ =
N⊗
i=1

[cos(θ/2) |↓⟩i − sin(θ/2) |↑⟩i]. (11)

Then, |θ⟩ is the prduct state of superpositions of spin down and up, modulated by the rotation angle θ.
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4. We detect a reflected photon. This means that the state |θ⟩ evolves under the action of the measurement
operator M̂1, i.e.

|ϕ⟩ = M̂1 |θ⟩√
⟨θ| M̂†

1M̂1 |θ⟩
. (12)

Let’s compute first the action of M̂1 on |θ⟩:

M̂1 |θ⟩ = |θ⟩ − ⟨↓ ... ↓|θ⟩ |↓ ... ↓⟩ = |θ⟩ −

(
N⊗
i=1

⟨↓|i [cos(θ/2) |↓⟩i − sin(θ/2) |↑⟩i]

)
|↓ ... ↓⟩ . (13)

Therefore

M̂1 |θ⟩ = |θ⟩ − cosN (θ/2) |↓ ... ↓⟩ , and (14)

⟨θ| M̂†
1M̂1 |θ⟩ =

(
⟨θ| − cosN (θ/2) ⟨↓ ... ↓|

) (
|θ⟩ − cosN (θ/2) |↓ ... ↓⟩

)
= 1− cos2N (θ/2), (15)

and we finally get the explicit expression for |ϕ⟩ in terms of |θ⟩ and |↓ ... ↓⟩

|ϕ⟩ = |θ⟩ − cosN (θ/2) |↓ ... ↓⟩√
1− cos2N (θ/2)

. (16)

5. A many-body quantum state is said to be entangled if it can not be expressed as a tensor product of one-body
quantum states (a product state). A popular "measurement" of entanglement consists in calculating the purity
of the reduced density matrix ρ̂red, γ = Tr(ρ̂2red). If γ = 1, then the reduced density matrix was pure, and
the state was not entangled. If instead γ < 1, then the reduced density matrix was mixed, and the state was
entangled.

Let’s consider the many-body state

|W ⟩ = 1√
N

N∑
i=1

|↓ ... ↑i ... ↓⟩ , (17)

let’s prove that this is an entangled state computing the purity of the obtained reduced density matrix after
have traced out one of the spins.

The simplest case is N = 2 and it is propaedeutic to the general N spins system. For N = 2 we get

|W ⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩), (18)

which is a Bell state. The associated density matrix is obviously ρ̂ = |W ⟩ ⟨W |. The reduced density matrix is
given by

ρ̂red = Tr1(ρ̂) = ⟨↓|1 |W ⟩ ⟨W |↓⟩1 + ⟨↑|1 |W ⟩ ⟨W |↑⟩1 =
1

2
(|↓⟩ ⟨↓|+ |↑⟩ ⟨↑|), (19)

which is mixed. Then the purity is

γ = Tr(ρ̂2red) =
1

2
< 1, (20)

and the initial state was entangled. We have verified that Bell states are actually entangled.
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Now let’s prove that even the N spins case is entangled. Let’s write

|W ⟩ = 1√
N

N∑
i=1

|↓ ... ↑i ... ↓⟩ =
1√
N

|↑⟩1 ⊗ |↓ ... ↓⟩N−1 +
1√
N

|↓⟩1 ⊗
N−1∑
i=1

|↓ ... ↑i ... ↓⟩ . (21)

Now the associated density matrix can be readily constructed as ρ̂ = |W ⟩ ⟨W |, while the reduced density matrix
is, as in the N = 2, ρ̂red = ⟨↓|1 |W ⟩ ⟨W |↓⟩1 + ⟨↑|1 |W ⟩ ⟨W |↑⟩1. One obtain easily

ρ̂red =
1

N
|↓ ... ↓⟩ ⟨↓ ... ↓|N−1 +

1

N

N−1∑
i,j=1

|↓ ... ↑i ... ↓⟩ ⟨↓ ... ↑j ... ↓|N−1 , (22)

and the squared density matrix is given by

ρ̂2red =
1

N2
|↓ ... ↓⟩ ⟨↓ ... ↓|N−1 +

1

N2

N−1∑
i,j=1

|↓ ... ↑i ... ↓⟩ ⟨↓ ... ↑j ... ↓|N−1


N−1∑

k,l=1

|↓ ... ↑k ... ↓⟩ ⟨↓ ... ↑l ... ↓|N−1

 =
1

N2
|↓ ... ↓⟩ ⟨↓ ... ↓|N−1 +

1

N2

N−1∑
i,j,k,l

δkl |↓ ... ↑i ... ↓⟩

⟨↓ ... ↑l ... ↓|N−1 =
1

N2
|↓ ... ↓⟩ ⟨↓ ... ↓|N−1 +

N − 1

N2

N−1∑
i,l

|↓ ... ↑i ... ↓⟩ ⟨↓ ... ↑l ... ↓|N−1 .

(23)

The purity is finally

γ = Tr(ρ̂2red) =
1

N2
+

(N − 1)2

N2
=
N2 − 2N + 2

N2
< 1. (24)

Then the state |W ⟩ was entangled. Notice that for large N , γ ∼ 1− 2/N .

6. We now want to understand if our measurement protocol is able to construct the state |W ⟩. In order to answer
to the question, we compute the fidelity F(W,ϕ) = | ⟨W |ϕ⟩ |2 for θ ≪ 1.
Let’s compute first the overlap ⟨W |ϕ⟩.

⟨W |ϕ⟩ = 1√
N

N∑
i=1

⟨↓ ... ↑i ... ↓|ϕ⟩ =
1√
N

N∑
i=1

⟨↓ ... ↑i ... ↓|θ⟩√
1− cos2N (θ/2)

, (25)

because ⟨↓ ... ↑i ... ↓|↓ ... ↓⟩ = 0. The overlap ⟨↓ ... ↑i ... ↓|θ⟩ is given by

⟨↓ ... ↑i ... ↓|
N⊗
j=1

[cos(θ/2) |↓⟩j − sin(θ/2) |↑⟩j ] = (⟨↓|1 [cos(θ/2) |↓⟩1 − sin(θ/2) |↑⟩1]) ...

(⟨↑|i [cos(θ/2) |↓⟩i − sin(θ/2) |↑⟩i]) ... (⟨↓|N [cos(θ/2) |↓⟩N − sin(θ/2) |↑⟩N ]) = − cosN−1(θ/2) sin(θ/2).

(26)

Then we obtain

⟨W |ϕ⟩ = 1√
N

N∑
i=1

− cosN−1(θ/2) sin(θ/2)√
1− cos2N (θ/2)

= −
√
N

cosN−1(θ/2) sin(θ/2)√
1− cos2N (θ/2)

, (27)

and the fidelity is given by

F(W,ϕ) = N
cos2N−2(θ/2) sin2(θ/2)

1− cos2N (θ/2)
. (28)
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Now we study the limit θ → 0.

F ≃ N

(
1− θ2

8

)2N−2
θ2

4

1−
(
1− θ2

8

)2N ≃ N

[
1− (2N − 2) θ

2

8

]
θ2

4

1− 1 + 2N θ2

8

= 1. (29)

7. We demonstrated that the proposed protocol can be used for generating entangled states starting from the
product state |↓ ... ↓⟩.
A possible limitation of such a protocol can be the need of a high signal/noise ratio for measuring photons.

II. PERMUTATIONS AND ENTANGLEMENT MEASUREMENTS.

We consider a system comprising two identical ensembles of qubits, let V̂ the SWAP operator that exchanges the
states between the two ensembles

V̂ |ϕ⟩1 ⊗ |ψ⟩2 = |ψ⟩1 ⊗ |ϕ⟩2 , (30)

where |ϕ⟩ and |ψ⟩ are generic states in the Hilbert space of one of the two ensembles (of course H = H1 ⊗H2).

1. Let’s first prove that the eigenvalues of V̂ are ±1. We apply V̂ 2 to |ϕ⟩1 ⊗ |ψ⟩2 obtaining

V̂ 2 |ϕ⟩1 ⊗ |ψ⟩2 = V̂ |ψ⟩1 ⊗ |ϕ⟩2 = |ϕ⟩1 ⊗ |ψ⟩2 . (31)

Then V̂ 2 = 1 and the eigenvalues of V̂ are ±1.

2. We prepare the ensembles such that both are identical copies of each other ρ̂full = ρ̂⊗ ρ̂. First, we want to show
that ⟨V̂ ⟩full = Tr(V̂ ρ̂full) = Tr(ρ̂2) = γ. In other words, the expectation value of the operator V̂ coincides with
the purity γ of the state of an individual ensemble.
The most general form of ρ̂ is by definition

ρ̂ =
∑
i

pi |ϕi⟩ ⟨ϕi| , and (32)

ρ̂⊗ ρ̂ =
∑
i

pi |ϕi⟩ ⟨ϕi| ⊗
∑
j

pj |ϕj⟩ ⟨ϕj | =
∑
i,j

pipj |ϕiϕj⟩ ⟨ϕiϕj | . (33)

Let’s apply explicitly V̂ to ρ̂⊗ ρ̂.

V̂ ρ̂⊗ ρ̂ = V̂
∑
i,j

pipj |ϕiϕj⟩ ⟨ϕiϕj | =
∑
i,j

pipj |ϕjϕi⟩ ⟨ϕiϕj | . (34)

Now we take the trace over the whole system

Tr(V̂ ρ̂full) =
∑
k,l

⟨ϕkϕl|

∑
i,j

pipj |ϕjϕi⟩ ⟨ϕiϕj |

 |ϕkϕl⟩

=
∑
i,j,k,l

δklδilpipj =
∑
i

p2i .

(35)

Now we compute ρ̂2.
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ρ̂2 =

(∑
i

pi |ϕi⟩ ⟨ϕi|

)∑
j

pj |ϕj⟩ ⟨ϕj |

 =
∑
i

p2i |ϕi⟩ ⟨ϕi| , (36)

and the trace is trivially
∑

i p
2
i .

In order to show that if ρ̂ is pure, then ρ̂full is symmetric, we can proceed in two ways.
First, we can apply the definition of pure state. If ρ̂ is pure, then ρ̂ = |ϕ⟩ ⟨ϕ|, and therefore ρ̂full = ρ̂ ⊗ ρ̂ =
|ϕϕ⟩ ⟨ϕϕ|, and we get

V̂ |ϕϕ⟩ ⟨ϕϕ| = |ϕϕ⟩ ⟨ϕϕ| , (37)

this means that |ϕϕ⟩ ⟨ϕϕ| is an eigenstate of V̂ with eigenvalues +1, so it is symmetric.

Second, more profoundly, we can write down the most general form of V̂ distinguishing the symmetric and
antisymmetric part

V̂ = (+1)
∑

sym|ξ⟩

|ξ⟩ ⟨ξ|+ (−1)
∑

antisym|ζ⟩

|ζ⟩ ⟨ζ| . (38)

Now, if ρ̂ is pure, then Tr(V̂ ρ̂full) = Tr(ρ̂2) = 1. Therefore, if Tr(V̂ ρ̂full) = 1 (i.e., ρ̂ is pure) then ρ̂full must
contain only symmetric wavefunctions, by virtue of the general form of V̂ .
This second argument, although less immediate, allows to deduce symmetry from purity directly from the value
of Tr(V̂ ρ̂full).

3. The fundamental problem in the preparation of ρ̂full is the difficulty of cloning quantum states. In general,
given a state described by the density matrix ρ̂, we can not make a copy of it.

A possible solution is the initialization of two identical ρ̂ instead of the copy of it.

4. We now focus on the simplest scenario where each ensemble contains one qubit. The goal is measuring the
purity of quantum states upon the preparation of two identical copies of the same system. Let’s write first the
basis states of the symmetric and antisymmetric subspaces of the Hilbert space in the {|↑⟩ , |↓⟩} basis.

We have simply the symmetric triplet {
|↑↑⟩ , |↓↓⟩ , 1√

2
(|↑↓⟩+ |↓↑⟩)

}
, (39)

and the antisymmetric singlet {
1√
2
(|↑↓⟩ − |↓↑⟩)

}
. (40)

5. The density matrix of the one-qubit system is

ρ̂ = p↑ |↑⟩ ⟨↑|+ p↓ |↓⟩ ⟨↓| . (41)

The whole system is ρ̂full = ρ̂⊗ ρ̂. From the previous point we know the 4D basis of the full Hilbert space, then
we can write the density matrix of the two-qubits system ρ̂full in the new basis.
Let’s call for simplicity |1⟩ = |↑↑⟩, |2⟩ = |↓↓⟩, |3⟩ = 1√

2
(|↑↓⟩ + |↓↑⟩) = |Ψ+⟩ and |4⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩) = |Ψ−⟩.

The full density matrix is therefore

ρ̂full =

4∑
i=1

pi |i⟩ ⟨i| . (42)
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Now we apply the SWAP operator

V̂ ρ̂full =

3∑
i=1

pi |i⟩ ⟨i| − p4 |4⟩ ⟨4| =
3∑

i=1

pi |i⟩ ⟨i| − p−
∣∣Ψ−〉 〈Ψ−∣∣ , (43)

since |4⟩ = |Ψ−⟩ is the only antisymmetric state. Now we compute the trace

Tr(V̂ ρ̂full) = Tr

(
3∑

i=1

pi |i⟩ ⟨i| − p−
∣∣Ψ−〉 〈Ψ−∣∣) =

3∑
i=1

pi − p− =

4∑
i=1

pi − 2p−. (44)

But
∑4

i=1 pi = 1 since they are probabilities and we get Tr(V̂ ρ̂full) = 1 − 2p−. For point 2., we know that
Tr(V̂ ρ̂full) = Tr(ρ̂2) = γ and we conclude

p− =
1− γ

2
, (45)

which is the probability to measure the two qubits in the Bell state |Ψ−⟩.


