Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110542274
train_KI.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Apr 26, 20:12
Size
2 KB
Mime Type
text/x-python
Expires
Mon, Apr 28, 20:12 (2 d)
Engine
blob
Format
Raw Data
Handle
25822399
Attached To
R8800 solar_potential
train_KI.py
View Options
import
numpy
as
np
import
pandas
as
pd
import
xarray
as
xr
import
os
import
time
from
features
import
Training
,
Testing
from
tables
import
open_file
,
Atom
,
Filters
################################ INPUTS ################################
#data_path = os.path.abspath("/Users/alinawalch/Documents/EPFL/data/meteo") # folder in which raw data is stored
data_path
=
os
.
path
.
abspath
(
"/mnt/sda1/hyenergy/data/meteo"
)
# List of features and tables
ftr_list
=
[
'x'
,
'y'
,
'z'
,
'month'
,
'hour'
]
lbl_list
=
[
'KI'
]
start_yr
=
[
2012
]
#,2012,2004] # Format: 'yyyymmdd'
end_yr
=
[
2012
]
#,2015]#,2015]
sampling_types
=
[
'rand'
,
'grid'
]
sampling_resolutions
=
[
100
,
500
]
query_locs
=
'query_points_1600.csv'
hours
=
list
(
range
(
3
,
20
))
months
=
list
(
range
(
1
,
13
))
# set location masks for the training and test
#train_locs = "locations/grid100_train.txt"
#test_locs = "locations/grid100_test.txt"
# modelname = "mytest"
########################### Create feature table. ########################
for
yr0
,
yr1
in
zip
(
start_yr
,
end_yr
):
start_date
=
str
(
yr0
)
+
'0101'
end_date
=
str
(
yr1
)
+
'1231'
for
res
in
sampling_resolutions
:
print
(
res
)
for
typ
in
sampling_types
:
print
(
typ
)
# set location masks for the training and test
train_locs
=
"locations/"
+
typ
+
str
(
res
)
+
"_train.txt"
test_locs
=
"locations/"
+
typ
+
str
(
res
)
+
"_test.txt"
modelname
=
str
(
yr0
)
+
'-'
+
str
(
yr1
)
+
'_'
+
typ
+
str
(
res
)
+
'_'
+
lbl_list
[
0
]
new_set
=
Training
(
data_path
,
modelname
,
ftr_list
,
lbl_list
)
new_set
.
make_dataset
(
start_date
,
end_date
,
sample_name
=
train_locs
,
test_name
=
test_locs
)
new_set
.
normalize_all
(
feature_norm
=
'mean'
,
target_norm
=
'mean'
,
val_ratio
=
0.8
,
force_normalization
=
True
)
myquery
=
Testing
(
data_path
,
modelname
,
query_name
=
'grid1600'
)
myquery
.
make_query
(
loc
=
query_locs
,
hour
=
hours
,
month
=
months
)
myquery
.
normalize_input
(
force_normalization
=
True
)
# set location masks for the training and test
train_locs
=
"locations/all_train.txt"
test_locs
=
"locations/all_test.txt"
modelname
=
str
(
yr0
)
+
'-'
+
str
(
yr1
)
+
'_all_'
+
lbl_list
[
0
]
new_set
=
Training
(
data_path
,
modelname
,
ftr_list
,
lbl_list
)
new_set
.
make_dataset
(
start_date
,
end_date
,
sample_name
=
train_locs
,
test_name
=
test_locs
)
new_set
.
normalize_all
(
feature_norm
=
'mean'
,
target_norm
=
'mean'
,
val_ratio
=
0.8
,
force_normalization
=
True
)
myquery
=
Testing
(
data_path
,
modelname
,
query_name
=
'grid1600'
)
myquery
.
make_query
(
loc
=
query_locs
,
hour
=
hours
,
month
=
months
)
myquery
.
normalize_input
()
Event Timeline
Log In to Comment