
BSPLINES Reference Guide

Trach-Minh Tran, Stephan Brunner, Kurt Appert v0.3, February 2012

Generalized splines of any order on irregular grids for interpolation and solving PDEs with FEM.

Contents

1 Properties of Splines 2

1.1 Recurrence Relation . 2

1.2 Support and positivity . 2

1.3 Sum of Splines . 3

1.4 Derivative of Splines . 4

1.5 Integrals of Splines . 4

1.6 Boundary Conditions . 5

1.6.1 Periodic splines . 5

1.6.2 Non-periodic splines . 5

1.6.3 Spline expansion . 6

1.7 Spline Initialization with SET SPLINE . 7

1.8 Generating Splines with DEF BASFUN . 8

1.9 Example 1: Values and derivatives of all splines . 9

2 Spline Interpolation 9

2.1 Choice of knots . 9

2.1.1 Periodic splines . 10

2.1.2 Non-Periodic splines . 10

2.2 The collocation matrix . 10

2.2.1 The non-periodic case . 10

2.2.2 The periodic case . 11

2.3 PP representation . 12

2.4 Example 2: Cubic spline interpolation . 13

2.5 2d interpolation . 14

2.5.1 Spline coefficients (GET SPLCOEF) . 15

2.5.2 PP representation (GRIDVAL) . 15

3 Finite Elements using Splines 16

3.1 The weak form . 16

3.2 The matrix assembly . 16

1. Properties of Splines 2

3.3 The boundary conditions . 16

3.3.1 Dirichlet condition . 16

3.3.2 Unicity on the axis . 16

1 Properties of Splines

In this section, several properties of splines will be shown in a more or less rigorous way. The aim is mainly to

provide a minimum mathematical background for using the module BSPLINES for the interpolation problem

as well as the Finite Element Method to solve PDEs. More rigorous mathematical proofs can be found in

the book by de Boor [1].

1.1 Recurrence Relation

We start by defining a finite interval [a, b] subdivided into Nx intervals:

a = t0 ≤ t1 ≤ . . . ≤ tNx
= b. (1)

The sequence ti, i = 0, . . . , Nx can be irregularly spaced. The jth spline of degree p defined on this sequence

of grid points (also called knots), is denoted by Λp
j and can be constructed using the following recurrence

relation. Starting with the constant spline

Λ0
i (x) =

{

1 if ti ≤ x < ti+1,

0 otherwise.
(2)

the splines of degree p > 0 for ti ≤ x < ti+1 can be constructed from

Λp
i = wp

iΛ
p−1
i + (1− wp

i+1)Λ
p−1
i+1 , (3)

wp
i =

x− ti
ti+p − ti

. (4)

Thus the values of all non-zero splines up to degree p in the interval [ti, ti+1] fit into the triangular array

as shown in Fig. 1. Starting from the first column with Λ0
i = 1, one can compute each of the p + 1

entries in a subsequent column with Eq. (3). Applying this procedure to generate splines on every intervals

[ti, ti+1], i = 0, . . . , Nx − 1 would produce the sequence of Nx + p splines of degree p: Λp
−p, . . . ,Λ

p
Nx−1.

1.2 Support and positivity

The linear spline

Λ1
i = w1

iΛ
0
i + (1− w1

i+1)Λ
0
i+1 =

x− ti
ti+1 − ti

Λ0
i +

ti+2 − x

ti+2 − ti+1
Λ0
i+1

consists of 2 linear pieces on [ti, ti+2], forming a C0 function which breaks at ti+1 and vanishes outside of

this interval. Likewise, the quadratic spline

Λ2
i = w2

iΛ
1
i + (1− w2

i+1)Λ
1
i+1

= w2
iw

1
iΛ

0
i + [w2

i (1− w1
i+1) + w1

i+1(1− w2
i+1)]Λ

0
i+1 + (1− w2

i+1)(1− w1
i+2)Λ

0
i+2

consists of 3 parabolic pieces on [ti, ti+3] that join to form a C1 function which breaks at ti+1 and ti+2 and

vanishes outside of this interval. In general the spline of degree p can be expressed as:

Λp
i =

p
∑

r=0

bpi+rΛ
0
i+r (5)

1. Properties of Splines 3

0

0

· Λp
i−p

0 Λp−1
i−p+1

0 · Λp
i−p+1

0 Λ2
i−2 Λp−1

i−p+2

Λ1
i−1 · Λp

i−p+2

Λ0
i Λ2

i−1 ·

Λ1
i · ·

0 Λ2
i Λp−1

i−1

0 · Λp
i−1

0 Λp−1
i

· Λp
i

0

0

Figure 1: The array of all the splines of degree up to p that are non-zero in [ti, ti+1].

where bpi+r is a sum of products of p linear functions, resulting in p + 1 polynomials of degree p, joining to

form a Cp−1 function which breaks at ti, . . . , ti+p+1 and vanishes outside of the support [ti, ti+p+1]. From

its construction, Λp
i is clearly strictly positive on the interior of [ti, ti+p+1].

Λp
i (x) > 0, ti < x < ti+p+1. (6)

1.3 Sum of Splines

For ti ≤ x < ti+1

∑

j

Λ0
j = Λ0

i = 1,

∑

j

Λ1
j = Λ1

i−1 + Λ1
i = (1− w1

i)Λ
0
i + w1

iΛ
0
i = 1.

Thus assuming that for p > 1:
i
∑

j=i−p+1

Λp−1
j = 1,

or that the sum of the next to last column in Fig. 1 is 1, we have, using the recurrence relation (3)

i
∑

j=i−p

Λp
j =

i
∑

j=i−p

(

wp
jΛ

p−1
j + (1− wp

j+1)Λ
p−1
j+1

)

=
i
∑

j=i−p+1

wp
jΛ

p−1
j +

i
∑

j=i−p+1

(1− wp
j)Λ

p−1
j

=

i
∑

j=i−p+1

Λp−1
j = 1.

1. Properties of Splines 4

1.4 Derivative of Splines

The derivative of the splines of degree p can be expressed in terms of the splines of degree p − 1 by the

following relation:

d

dx
Λp
i = p

(

Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1

)

. (7)

A straightforward consequence of this relation is that the splines of order p are Cp−1 continuous. The

demonstration of Eq.(7) is done by induction. One starts with the case p = 1:

d

dx
Λ1
i =

d

dx

[

w1
iΛ

0
i + (1− w1

i+1)Λ
0
i+1

]

=
dw1

i

dx
Λ0
i +

d (1− w1
i+1)

dx
Λ0
i+1 + w1

i

dΛ0
i

dx
+ (1− w1

i+1)
dΛ0

i+1

dx

=
1

ti+1 − ti
Λ0
i −

1

ti+2 − ti+1
Λ0
i+1,

having used Eq.(3) and dΛ0
i /dx = 0. One then assumes Eq.(7) true for p − 1 and demonstrates that it

remains true for p. This is done as follows:

d

dx
Λp
i =

d

dx

[

wp
iΛ

p−1
i + (1− wp

i+1)Λ
p−1
i+1

]

(8)

=
dwp

i

dx
Λp−1
i +

d (1− wp
i+1)

dx
Λp−1
i+1 + wp

i

dΛp−1
i

dx
+ (1− wp

i+1)
dΛp−1

i+1

dx

=
Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1

+wp
i (p− 1)

(

Λp−2
i

ti+p−1 − ti
−

Λp−2
i+1

ti+p − ti+1

)

+ (1− wp
i+1)(p− 1)

(

Λp−2
i+1

ti+p − ti+1
−

Λp−2
i+2

ti+p+1 − ti+2

)

(9)

having used Eq.(3) to obtain (8), and the induction hypothesis to obtain Eq.(9). Now, rearranging the last

two terms of Eq.(9), one easily obtains:

d

dx
Λp
i =

Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1

+(p− 1)

[

1

ti+p − ti

(

x− ti
ti+p−1 − ti

Λp−2
i +

ti+p − x

ti+p − ti+1
Λp−2
i+1

)

−
1

ti+p+1 − ti+1

(

x− ti+1

ti+p − ti+1
Λp−2
i+1 +

ti+p+1 − x

ti+p+1 − ti+2
Λp−2
i+2

)]

=
Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1
+ (p− 1)

(

Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1

)

(10)

= p

(

Λp−1
i

ti+p − ti
−

Λp−1
i+1

ti+p+1 − ti+1

)

having again used Eq.(3) to obtain (10). This completes the demonstration of relation (7).

1.5 Integrals of Splines

With the proper normalization all splines of all degrees have unitary surface:

p+ 1

ti+p+1 − ti

∫

Λp
i (x)dx = 1. (11)

This relation holds trivially for p = 0 and p = 1. A recursive proof of the general statement (11) starts

assuming
p

ti+p − ti

∫

Λp−1
i (x)dx = 1 (12)

1. Properties of Splines 5

to be true. Then using Eq.(7) multiplied by x and integrating one obtains:

∫

x
d

dx
Λp
i dx = −

∫

Λp
i dx = p

∫

(

xΛp−1
i

ti+p − ti
−

xΛp−1
i+1

ti+p+1 − ti+1

)

dx.

Completing the fractions in the big parentheses in view of using Eq.(3) one has

∫

Λp
i dx = − p

∫

x− ti
ti+p − ti

Λp−1
i dx− p

∫

ti
ti+p − ti

Λp−1
i dx

− p

∫

ti+p+1 − x

ti+p+1 − ti+1
Λp−1
i+1 dx+ p

∫

ti+p+1

ti+p+1 − ti+1
Λp−1
i+1 dx,

where the first and the third terms on the right correspond to −p
∫

Λp
i dx, Eq.(3), and can be combined with

the left side to yield

(1 + p)

∫

Λp
i dx = ti+p+1 − ti, (13)

where relation (12) has been used for the rest on the right hand side. This concludes the proof of Eq.(11).

1.6 Boundary Conditions

Applying the recurrence relation to generate all the splines on the finite domain [t0, tNx
] yields the Nx + p

splines of degree p:

Λp
−p,Λ

p
−p+1, . . . ,Λ

p
Nx−1. (14)

Note that additional knots beyond both ends of [t0, tNx
] have to be defined to generate all these splines.

1.6.1 Periodic splines

The extra knots are simply defined through periodicity.:

t−ν = tNx−ν − (b− a), (15)

tNx+ν = tν + (b− a), ν = 0, . . . , p. (16)

The p+ 1 leftmost splines in (14) are thus identical to the rightmost splines:

Λp
−ν = Λp

Nx−ν , ν = 0, . . . , p. (17)

1.6.2 Non-periodic splines

The choice made in BSPLINES is simply:

t−p = · · · = t0 = a, b = tNx
= · · · = tNx+p. (18)

Thus in the first interval [t0, t1], the first spline Λp
−p is constructed (refer to the first entry on each of the

column of Fig. 1, with i = 0) as follow:

Λ1
−1 = (1− w1

0)Λ
0
0 =

t1 − x

t1 − t0
Λ0
0

Λ2
−2 = (1− w2

−1)Λ
1
−1 =

t1 − x

t1 − t−1
Λ1
−1 =

(

t1 − x

t1 − t0

)2

Λ0
0

· · ·

Λp
−p = (1− wp

−p+1)Λ
p
−p+1 =

t1 − x

t1 − t−p+1
Λp−1
−p+1 =

(

t1 − x

t1 − t0

)p

Λ0
0

1. Properties of Splines 6

In the same manner, the generation of the last spline Λp
Nx−1 (last entry on each of the column of Fig. 1,

with i = Nx − 1) yields:

Λ1
Nx−1 = w1

Nx−1Λ
0
Nx−1 =

x− tNx−1

tNx
− tNx−1

Λ0
Nx−1

Λ2
Nx−1 = w2

Nx−1Λ
1
Nx−1 =

x− tNx−1

tNx+1 − tNx−1
Λ1
Nx−1 =

(

x− tNx−1

tNx
− tNx−1

)2

Λ0
Nx−1

· · ·

Λp
Nx−1 = wp

Nx−1Λ
p
Nx−1 =

x− tNx−1

tNx+p−1 − tNx−1
Λ1
Nx−1 =

(

x− tNx−1

tNx
− tNx−1

)p

Λ0
Nx−1

Since the sum of all splines is 1 and using the positivity of splines, all the non-periodic splines, except the

first (last) spline should vanish at x = a (x = b):

Λp
r(a) = δr,−p, Λp

r(b) = δr,Nx−1 (19)

The spline derivatives at the boundaries x = a and x = b can be derived using Eq.(7) as follow. At x = a

(interval [t0, t1]), by noting that only the spline Λp−1
−p+1 is non-zero at x = a (see next to last column of Fig.1,

with i = 0), it is easy to see that there are only 2 non-zero derivatives given by

d

dx
Λp
−p(a) =−

pΛp−1
−p+1(a)

t1 − t−p
= −

p

t1 − t0
,

d

dx
Λp
−p+1(a) =

pΛp−1
−p+1(a)

t1 − t−p+1
=

p

t1 − t0
,

(20)

where we have used t0 = t−1 = . . . = t−p = a. Likewise, the 2 non-zero derivatives of spline at the other

boundary x = b are

d

dx
Λp
Nx−2(b) =−

pΛp−1
Nx−1(b)

tNx+p−1 − tNx−1
= −

p

tNx
− tNx−1

,

d

dx
Λp
Nx−1(b) =

pΛp−1
Nx−1(b)

tNx+p−1 − tNx−1
=

p

tNx
− tNx−1

,

(21)

where we have used tNx
= tNx+1 = . . . = tNx+p = b.

1.6.3 Spline expansion

In summary, the approximation of a function f defined in the interval [a, b] using a basis (Is this obvious?)

of splines of degree p associated with the sequence of knots ti, i = −p, . . . , Nx + p can be written as

f(x) =

Nx−1
∑

j=−p

cjΛ
p
j (x),

support of Λp
j : [tj , tj+p+1],

ti ≤ x < ti+1 =⇒ Λp
i−p(x), . . . ,Λ

p
i (x) ≥ 0.

(22)

Note that the last spline in the interval [ti, ti+1], which can be written as

Λp
i (x) = wp

i (x)Λ
p−1
i (x) = . . . = wp

i (x)w
p−1
i (x) . . . w1

i (x)Λ
0
i (x)

vanishes at the knot x = ti. Thus at any position x, the sum involves p + 1 terms except at the knots ti
where there are only p terms.

It is sometimes more convenient to renumber the spline index j so that it starts from 0. With this new

numbering, the spline expansion becomes

f(x) =

Nx+p−1
∑

j=0

cjΛ
p
j (x),

support of Λp
j : [tj−p, tj+1],

ti ≤ x < ti+1 =⇒ Λp
i (x), . . . ,Λ

p
i+p(x) ≥ 0.

(23)

1. Properties of Splines 7

In the periodic case, there are Nx independent spline coefficients since

cNx+ν = cν , ν = 0, . . . , p− 1. (24)

In the non-periodic case, the first and the last spline coefficients c0, cNx+p−1 are respectively the values of f

at the end points a and b.

The basis functions for both non-periodic and periodic cubic splines (p = 3) are shown in Fig .2 where this

new numbering is used.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Splines of degree = 3 NX = 10

S
pl

in
es

Λ
0 Λ

4Λ
3Λ

2
Λ

1

Λ
9Λ

8
Λ

7
Λ

6
Λ

5 Λ
10

Λ
12

Λ
11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

S
pl

in
es

Periodic Splines of degree 3, NX =10

Λ
2Λ

1

Λ
0

Λ
9

Λ
8

Λ
7Λ

6
Λ

5Λ
4

Λ
3

Λ
10/0

Λ
11/1

Λ
12/2

Figure 2: The basis of non-periodic and periodic cubic splines. The periodic splines Λ10, Λ11, Λ12 denote

the same splines as Λ0, Λ1, Λ2 respectively.

1.7 Spline Initialization with SET SPLINE

The initialization of a spline is performed by calling the routine SET SPLINE, passing the desired degree p and

the sequence of grid points (or knots) tj , j = 0, . . . , Nx. If Gauss points on each of the intervals [tj , tj+1] are

needed, a non-zero value of NGAUSS should be specified. The other input argument is the optional LOGICAL

argument PERIOD to define the periodicity of the splines. By default it is .FALSE.. The routine returns the

1d spline SP which is of type TYPE(spline1d):

SUBROUTINE set_spline(p, ngauss, grid, sp, period)

INTEGER, INTENT(in) :: p, ngauss

DOUBLE PRECISION, INTENT(in) :: grid(:)

LOGICAL, OPTIONAL, INTENT(in) :: period

TYPE(spline1d), INTENT(out) :: sp

LOGICAL, OPTIONAL, INTENT(in) :: period

Besides the main characteristics of the spline (degree p of splines, number of grid intervals, dimension of

splines Nx + p, etc.) the following quantities will be determined and stored in SP:

1. Properties of Splines 8

• values and all the p derivatives of the p + 1 non-vanishing splines on each knots tj . These quantities

will be used to speed up computation of the spline expansion (23).

• integrals of splines Ii =
∫

Λi(x) dx.

For a 2d spline

Λp+q
ij (x, y) = Λp

i (x)Λ
q
j(y), (25)

on a 2d structured mesh defined by the grid points grid1(0:N1), grid2(0:N2), the same call as in the 1d

case can be used, except that the scalars p, ngauss, period become 2 element arrays and the output SP

is now of type TYPE(spline2d):

INTEGER :: p(2), ngauss(2)

LOGICAL, OPTIONAL :: period(2)

DOUBLE PRECISION, dimension(:) :: grid1, grid2

TYPE(spline2d) :: sp2d

...

CALL set_spline(p, ngauss, grid1, grid2, sp2d, period)

The derived type spline2d is a wrapper of 2 spline1d objects which can be accessed through sp2d%sp1

and sp2d%sp2.

Once SET SPLINE is called, the routine GET DIM can be called to inquire the spline’s essential characteristics

such as dimension, number of intervals and degree, for both 1d and 2d splines:

SUBROUTINE get_dim(sp, dim, nx, nidbas)

TYPE(spline1d), INTENT(in) :: sp

INTEGER, INTENT(out) :: dim

INTEGER, OPTIONAL, INTENT(out) :: nx, nidbas

Integral of function
∫ b

a
f(x)dx is computed from its spline sp and splines coefficients in:

DOUBLE PRECISION FUNCTION fintg(sp, c)

TYPE(spline1d), INTENT(in) :: sp

DOUBLE PRECISION, INTENT(in) :: c(:)

For a 2d functions, the same function should be called with a 2d spline sp and 2d array c.

Finally DESTROY SP(sp) should be called when a spline sp is not needed anymore to clean up memory space.

1.8 Generating Splines with DEF BASFUN

SUBROUTINE def_basfun(xp, sp, fun, left)

DOUBLE PRECISION, INTENT(in) :: xp

TYPE(spline1d), INTENT(in) :: sp

DOUBLE PRECISION, INTENT(out) :: fun(:,:)

INTEGER, OPTIONAL, INTENT(out) :: left

This routine computes, for a given point xp ∈ [t0, tNx
], the value and optionally the m derivatives of the

p + 1 splines sp which were previously defined and returns them in fun(1:p+1,1:m+1) with m ≤ p. The

maximum number of computed derivatives m is determined by the size of the second dimension of the array

fun. The subroutine will return the optional integer left defined such that:

tleft ≤ xp < tleft+1, 0 ≤ left ≤ Nx.−1.

2. Spline Interpolation 9

1.9 Example 1: Values and derivatives of all splines

In this example, we first initialize a cubic spline with the knot sequence t0, . . . , tNx
with SET SPLINE and

then call DEF BASFUN to compute its values, first and second derivatives on the mesh points xp(1:npts).

USE BSPLINES

INTEGER, PARAMETER :: nx=10, npts=100

DOUBLE PRECISION :: t(0:nx), xp(npts)

DOUBLE PRECISION, ALLOCATABLE :: fxp0(:,:), fxp1(:,:), fxp2(:,:)

DOUBLE PRECISION :: fun(4,3) ! 4 cubic splines at a given xp

! plus first and second derivatives.

INTEGER :: i, dim, left

TYPE(spline1d) :: sp

!

! Define t(0:nx), xp(npts)

!

CALL set_spline(3, 0, t, sp, period=.FALSE.)

CALL get_dim(sp, dim)

ALLOCATE(fxp0(npts,0:dim-1), fxp1(npts,0:dim-1), fxp2(npts,0:dim-1)

fxp0 = 0.0

fxp1 = 0.0

fxp2 = 0.0

DO i=1,npts

CALL def_basfun(xp(i), sp, fun, left=left)

fxp0(i, left:left+3) = fun(1:4, 1) ! Value

fxp1(i, left:left+3) = fun(1:4, 2) ! 1st derivative

fxp2(i, left:left+3) = fun(1:4, 3) ! 2nd derivative

END DO

DEALLOCATE(fxp0, fxp1, fxp2)

CALL destroy_sp(sp)

This code fragment will store dim=nx+3=13 splines and theirs first 2 derivatives in fxp0, fxp1 and fxp2.

Change the period to .TRUE. to obtain periodic splines.

2 Spline Interpolation

Given the interval [a, b] discretized into {xk, k = 0, . . . , Ng} with x0 = a and xNg
= b, the problem of inter-

polating f(x), x ∈ [a, b] with splines of degree p is to solve the following equations for the spline coefficients

ci:
Nx+p−1
∑

i=0

ciΛ
p
i (xk) = f(xk), k = 0, . . . , Ng. (26)

The sequence of knots t0, . . . , tNx
defines completely the splines Λp

i and its choice will be described in the

following section.

2.1 Choice of knots

If Eqs. (26) are the only conditions for our interpolation problem, the number of equations should match

the number of unknowns ci. The number of knot intervals Nx hence has to verify

Nx = Ng − p+ 1. (27)

2. Spline Interpolation 10

For the periodic case, taking into account the p periodic spline conditions (24) on ci and f(a) = f(b), this

condition reduces to:

Nx = Ng. (28)

For odd values of the spline degree p, the knots ti could be placed on the interpolation sites xk while when p

is even, ti should not be on xk to avoid a badly conditioned linear system when solving Eq. (26). This leads

to the following choice for ti in BSPLINES:

2.1.1 Periodic splines

The number of knots Nx + 1 is equal to the number of interpolation points Ng + 1 with

ti =

{

xi p odd

(xi−1 + xi)/2 p even
, i = 0, . . . , Nx (29)

2.1.2 Non-Periodic splines

In order to satisfy the equality (27), first, the 2 end points are retained as knots:

t0 = x0, tNx
= xNg

. (30)

For even p, the first p/2 interpolation intervals are skipped :

ti = (xi+p/2−1 + xi+p/2)/2, i = 1, . . . , Nx − 1, (31)

while for odd p, (p− 1)/2 interpolation points are skipped :

ti = xi+(p−1)/2, i = 1, . . . , Nx − 1. (32)

Instead of skipping grid points, an alternative would be to supplement the system of equations (26) with

conditions on derivatives of f(x) at one or both ends of [a, b]. This type of boundary conditions is not

implemented in the present version of the BSPLINES module.

2.2 The collocation matrix

The collocation matrix Λp
i (xk) of the interpolation problem (26) is a square matrix. Each row has at most

p+ 1 non-zero terms. Let us consider separately the non-periodic and the periodic cases.

2.2.1 The non-periodic case

Even spline degree From (31), there are p/2+1 interpolation points x0, . . . , xp/2 in the first knot interval

[t0, t1). Since there are at most p + 1 non-zero splines for any points in each interval (except for x0 where

Λi(x0) = δi,0, the collocation matrix starts as:























Λ0(x0) 0 · · · · · · · · · · · ·

Λ0(x1) Λ1(x1) · · · Λp(x1) 0 · · ·
...

... · · ·
... 0 · · ·

Λ0(xp/2) Λ1(xp/2) · · · Λp(xp/2) 0 · · ·

0 Λ1(xp/2+1) · · · Λp(xp/2+1) Λp+1(xp/2+1) 0

0
. . .

. . .
. . .

. . .
. . .























(33)

2. Spline Interpolation 11

The number of upper-diagonals (non including the diagonal) is obviously determined by the second row of

the matrix above, which yields p−1. Since the knot placement is identical for both ends of the interpolation

mesh, the matrix Λi(xk) is banded with half-bandwidths

kl = ku = p− 1 (34)

Odd spline degree Applying the same procedure, it is straightforward to show for p odd and from (32),

that x0,x(p−1)/2 are located in the first knot interval [t0, t1) and that the matrix has again the same

half-bandwidths as in the even p case.

The resulting interpolation problem can then be solved with the usual banded matrix factorization followed

by a back-solve phase.

2.2.2 The periodic case

Let consider the matrix for p = 3 and Nx = 10 (see lower figure of Fig. (2):





















Λ0(x0) Λ1(x0) Λ2(x0) 0 · · ·

0 Λ1(x1) Λ2(x1) Λ3(x1) 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 · · · 0 Λ7(x7) Λ8(x7) Λ9(x7)

Λ0(x8) 0 0 · · · Λ8(x8) Λ9(x8)

Λ0(x9) Λ1(x9) 0 0 · · · Λ9(x9)





















(35)

The matrix is “almost triangular” (except for the last 2 rows) and is not diagonally dominant ! A more

satisfactory (and symmetric in shape) matrix is however obtained by simply renumbering the splines such

that the sequence starts with −⌊p/2⌋ instead of 0. This renumbered splines are shown in Fig. 3 for the cubic

and quadratic periodic splines. With this renumbering, the matrix (35) has a more symmetric shape and is

diagonally dominant:
















Λ0(x0) Λ1(x0) 0 · · · Λ9(x0)

Λ0(x1) Λ1(x1) Λ2(x1) 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · Λ7(x8) Λ8(x8) Λ9(x8)

Λ0(x9) 0 0 Λ8(x9) Λ9(x9)

















(36)

In general, for arbitrary p (even and odd values), the collocation matrix A = Λj(xi) can be written as

A = B + UV T (37)

where B is a banded matrix with half-bandwidths kl = ku = b = ⌊p/2⌋ and rank Nx. U and V are Nx × 2b

sparse matrices:

U =







I 0

0 0

0 I






, V =







0 DT

0 0

CT 0






, V T =

(

0 0 C

D 0 0

)

, (38)

where C, D are the b × b off-band sub-matrices and I, the identity matrix. In the cubic spline example

considered above, the off-band matrices are simply 1× 1 matrices with C = Λ9(x0) and D = Λ0(x9).

The inverse of A can be deduced from the Sherman-Morrison-Woodbury formula [2]:

2. Spline Interpolation 12

A−1 = B−1 −B−1U(1 + V TB−1U)−1V TB−1

= B−1 − ZWTB−1,

where

Z = B−1U,

H = 1 + V TB−1U

WT = H−1V T .

The solution of the interpolation problem Ax = f can then be reduced to a factorization and a back-solve

phase:

1. Factorization

(a) Factor: B ←− LBUB

(b) Solve: (LBUB)Z = U, U ←− Z

(c) Compute: H = 1 + V TZ

(d) Factor: H = LHUH

(e) Solve: (LHUH)WT = V T , V T ←−WT

2. Back-solve

(a) Solve: (LBUB)y = f

(b) Compute: t = WT y

(c) Compute: x = y − Zt

At the end of the factorization, only the (updated) matrices B, U and V T , required in the back-solve phase,

need to be saved. Note that we avoid to store the product ZWT because it is a big Nx ×Nx matrix.

After the back-solve step, the solution x is shifted back (by ⌊p/2⌋) and the appropriate periodicity condition

is applied to obtain the spline coefficients cj , j = 0, . . . , Nx + p− 1, as defined in (23).

2.3 PP representation

The computation of f(x) using directly the spline expansion Eq. (23) can be costly, because of the evalua-

tion of the splines Λp
j (x), especially when interpolating on large number of points. Expanding f(x), using

truncated Taylor series in each interval [tµ, tµ+1], we obtain the following Piecewise Polynomial Function

representation (or ppform) of f(x):

f(x) =

p
∑

k=0

Πkµ(x− tµ)
k, tµ ≤ x < tµ+1, (39)

where

Πkµ =
1

k!

dk

dxk
f(tµ) =

1

k!

∑

j

cj
dk

dxk
Λj(tµ) =

∑

j

cjαjµk. (40)

Note that

αjµk =
1

k!

dk

dxk
Λj(tµ) (41)

2. Spline Interpolation 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

S
pl

in
es

Periodic Splines of degree 2 for Interpolation on [0, 1], NX =10

Λ
10/0

Λ
0

Λ
9/−1

Λ
8

Λ
7

Λ
6

Λ
5

Λ
4Λ

3
Λ

2Λ
1

Λ
−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
S

pl
in

es
Periodic Splines of degree 3 for Interpolation on [0,1], NX =10

Λ
1Λ

0

Λ
−1

Λ
8

Λ
7

Λ
6

Λ
5

Λ
4Λ

3Λ
2

Λ
9/−1Λ

10/0

Λ
11/1

Figure 3: The periodic cubic and quadratic splines used for interpolation. The spline knots are indicated by

blue full circles and the interpolation points, by dashed vertical lines

depend only on the spline specifications. They are pre-calculated in the spline setup routine SET SPLINE and

stored in the 3d arrays sp%val0. The PP coefficients Πkµ can be computed once the spline coefficients cj are

available, using (40). Then the interpolated function values together with the p derivatives can be calculated

efficiently using the power series.

f(x) =

p
∑

k=0

Πkµ(x− tµ)
k

f ′(x) =

p
∑

k=1

kΠkµ(x− tµ)
k−1

f ′′(x) =

p
∑

k=2

k(k − 1)Πkµ(x− tµ)
k−2

...

These 2 steps are performed in GRIDVAL. Note that the first step (computation of Πkµ from cj) can be skipped

for subsequent calls to GRIDVAL with the same function f , for example to compute f or its derivatives at

any others points x.

2.4 Example 2: Cubic spline interpolation

Given a function f with its grid values f(1:nx), the following example determines the spline coefficients

c(1:dim). Using these coefficients, the interpolated f and derivative f ′ are then computed on the mesh

2. Spline Interpolation 14

points xp(1:npts). Note that the second call to GRIDVAL does not include the spline coefficients c to signal

that the previously calculated PP coefficients will be reused.

USE BSPLINES

INTEGER, PARAMETER :: nx=10, npts=100

DOUBLE PRECISION :: x(0:nx), f(0:nx), xp(npts), fp0(npts), fp1(npts)

DOUBLE PRECISION, ALLOCATABLE :: c(:)

INTEGER :: dim

TYPE(spline1d) :: sp

!

! Define x and f

!

CALL set_splcoef(3, x, sp, period=.FALSE.)

CALL get_dim(sp, dim)

ALLOCATE(c(dim))

CALL get_splcoef(sp, f, c) ! compute spline coefs c(1:dim)

!

! Compute interpolated f and f’ on xp(npts)

!

CALL gridval(sp, xp, fp0, 0, c)

CALL gridval(sp, xp, fp1, 1)

!

DEALLOCATE(c)

CALL destroy_sp(sp)

The description of each of the routines called in the example above is briefly given below:

SET SPLCOEF Determines the spline knots, sets up the splines with SET SPLINE, assembles the collocation

matrix and performs its factorization.

GET SPLCOEF Computes the spline coefficients c from the input grid values of function f (back-solve phase),

using the factorized matrix.

GRIDVAL Compute the PP coefficients using (40) if c is provided, locates the interval containing the given

point x and computes interpolated function values or derivatives using the PP representation (40).

2.5 2d interpolation

Consider the spline interpolation on the plane (x, y), using a tensor product of splines defined as follow

Λp,q
ij (x, y) = Λp

i (x)Λ
q
j(y),

i = 1, . . . , d1 = N1 + p,

j = 1, . . . , d2 = N2 + q,
(42)

where (p, q) are the spline degrees , (N1, N2), the number of knot intervals in each direction:

t0 ≤ x < tN1
, s0 ≤ y < sN2

.

2. Spline Interpolation 15

2.5.1 Spline coefficients (GET SPLCOEF)

The 2d version of (26) can be written as:

∑

ij

cijΛ
p
i (xµ)Λ

q
j(yν) = f(xµ, yν)

= fµν

µ = 0, . . . , Ng1

ν = 0, . . . , Ng2

(43)

where (xµ, yν) are the interpolation sites on the (x, y) plane. These equations can be rearranged into

∑

i

c̄iνΛi(xµ) = fµν , (44)

∑

j

cijΛj(yν) = c̄iν . (45)

Such a 2 step procedure is implemented, using the 1d version of GET SPLCOEF in the 2d version of GET SPLCOEF

by the following code fragment:

TYPE(spline2d) :: sp

DOUBLE PRECISION :: ctr(SIZE(c,2), SIZE(c,1))

CALL get_splcoefn(sp%sp1, f, c)

CALL get_splcoefn(sp%sp2, TRANSPOSE(c), ctr)

c = TRANSPOSE(ctr)

2.5.2 PP representation (GRIDVAL)

Let us start with the spline representation, for f(x, y) with tµ ≤ x < tµ+1 and sν ≤ y < sν+1:

f(x, y) =

d2
∑

j=1

(

d1
∑

i=1

cijΛ
p
i (x)

)

Λq
j(y). (46)

Applying successively (39) to the x and y functional dependency yields the following PP representation for

f(x, y):

f(x, y) =

q
∑

k′=0

(

p
∑

k=0

Πkµk′ν(x− tµ)
k

)

(y − sν)
k′

(47)

The 2d PP coefficient is the tensor product of 2 1d PP coefficients:

Πkµk′ν =

d2
∑

l′=1

(

d1
∑

l=1

cll′ αlµk

)

α′

l′νk′ . (48)

where α and α′ are respectively the derivatives (41) of all splines in x and y direction. All the derivatives of

f can be deduced straightforwardly from the PP representation (47).

In the present version, the 2d GRIDVAL can be called, either for (1) points on a 2d structured mesh:

XP(1:NPX), YP(1:NPY) and returns the array FP(1:NPX,1:NPY), or (2) with a 1d sequence of points

XP(1:NP), YP(1:NP) and returns the 1d array FP(1:NP).

3. Finite Elements using Splines 16

3 Finite Elements using Splines

3.1 The weak form

3.2 The matrix assembly

3.3 The boundary conditions

3.3.1 Dirichlet condition

Dirichlet BC can be simply applied by imposing the conditions on the spline coefficients and the boundary

point. For the BC u(x = 0) = u1 = c for example, the discrete equations can be expressed as:







1 0 · · ·

A21 A22 · · ·
...

...
. . .



















u1

u2

...

uN













=













c

f2
...

fN













(49)

A more appropriate transformed system which preserves any symmetry of the original system is:







1 0 · · ·

0 A22 · · ·
...

...
. . .



















u1

u2

...

uN













=













c

f2 − cA21

...

fN − cAN1













(50)

3.3.2 Unicity on the axis

Denoting the N solutions at the axis by (u1, . . . , uN) , and their transforms by (û1, . . . , ûN) defined by

u1 − uN = û1 u1 = û1 + ûN

u2 − uN = û2 u2 = û2 + ûN

... =⇒
...

uN−1 − uN = ûN−1 uN−1 = û1−1 + ûN

uN = ûN uN = ûN ,

(51)

the unicity condition can be specified by simply imposing

û1 = û2 = . . . = ûN−1 = 0. (52)

From (51), the transformation matrix U is defined as

u = U · û, U =

















1 0 . . . 0 1

0 1 . . . 0 1
. . .

...

0 0 . . . 1 1

0 0 . . . 0 1

















, UT =

















1 0 . . . 0 0

0 1 . . . 0 0
. . .

...

0 0 . . . 1 0

1 1 . . . 1 1

















. (53)

3. Finite Elements using Splines 17

Matrix product A ·U

A ·U =

















A1,1 A1,2 . . . A1,N−1

∑

j A1,j

A2,1 A2,2 . . . A2,N−1

∑

j A2,j

. . .
...

AN−1,1 AN−1,2 . . . AN−1,N−1

∑

j AN−1,j

AN,1 AN,2 . . . AN,N−1

∑

j AN,j

















. (54)

Thus right multiply by U is equivalent to put the the sum of each row on the last column.

Matrix product UT ·A

UT ·A =

















A1,1 A1,2 . . . A1,N−1 A1,N

A2,1 A2,2 . . . A2,N−1 A2,N

. . .
...

AN−1,1 AN−1,2 . . . AN−1,N−1 AN−1,N
∑

i Ai,1

∑

i Ai,2 . . .
∑

i Ai,N−1

∑

i Ai,N

















. (55)

Thus left multiply by Û is equivalent to put the the sum of each column on the last row.

Product Û · b

b̂ = UT · b =

















b1
b2
...

bN−1
∑

i bi

















, (56)

Transformation of the original matrix equation The full original linear system, obtained from the

discretization of the 2D r, θ polar coordinates can be written as:

(

A B

C D

)(

u

v

)

=

(

b

c

)

, (57)

where the solution array is split into the solutions u at r = 0 and the solutions v on the remaining domain.

The transformed system can thus be written as

(

UT 0

0 I

)(

A B

C D

)(

U 0

0 I

)(

û

v

)

=

(

UT 0

0 I

)(

b

c

)

,

=⇒

(

UTAU UTB

CU D

)(

û

v

)

=

(

UTb

c

)

, (58)

Notice that the transformation preserves any symmetry existing in the original system (57). The transformed

matrix is finally given in the following where only the modified elements are shown and the sum is only over

REFERENCES 18

the first N points in θ direction. The × symbol denotes unmodified elements.





























× × × ×
∑

j A1,j × ×

× × × ×
∑

j A2,j × ×

× × × ×
... × ×

× × × ×
∑

j AN−1,j × ×
∑

i Ai,1

∑

i Ai,2 . . .
∑

i Ai,N−1

∑

i,j Ai,j

∑

i Ai,N+1 . . .

× × × ×
∑

j AN+1,j × ×

× × × ×
... × ×





























(59)

Only theN th column and theN th row are affected by the transformation. Applying now the unicity condition

(52) the final transformed system reads:





























1 0 . . . 0 0 0 0

0 1 . . . 0 0 0 0

0 0
. . . 0

... 0 0

0 0 . . . 1 0 0 0

0 0 . . . 0
∑

i,j Ai,j

∑

i Ai,N+1 . . .

0 0 . . . 0
∑

j AN+1,j × ×

0 0 . . . 0
... × ×























































û1

û2

...

ûN−1

ûN

uN+1

...



























=



























0

0
...

0
∑

i bi
bN+1

...



























. (60)

References

[1] C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27 (Springer, NY, 2001).

[2] G.H. Golub, C.F. Van Loan, Matrix Computation, 3rd Edition, p.5 (The John Hopkins University Press,

1996).

	Properties of Splines
	Recurrence Relation
	Support and positivity
	Sum of Splines
	Derivative of Splines
	Integrals of Splines
	Boundary Conditions
	Periodic splines
	Non-periodic splines
	Spline expansion

	Spline Initialization with SET_SPLINE
	Generating Splines with DEF_BASFUN
	Example 1: Values and derivatives of all splines

	Spline Interpolation
	Choice of knots
	Periodic splines
	Non-Periodic splines

	The collocation matrix
	The non-periodic case
	The periodic case

	PP representation
	Example 2: Cubic spline interpolation
	2d interpolation
	Spline coefficients (GET_SPLCOEF)
	PP representation (GRIDVAL)

	Finite Elements using Splines
	The weak form
	The matrix assembly
	The boundary conditions
	Dirichlet condition
	Unicity on the axis

