
Using BSPLINES in Particle Codes

Trach-Minh Tran v0.1, March 2012

These notes present some practical considerations on using BSPLINES in particle codes, in particular for the

charge or current assignment as well as the field interpolation. Performance measurements are done on an Intel

Xeon X5570 and the more recent Xeon E5-2680.

1 Introduction

For simplicity, we assume in these notes that we are dealing with a 2D electrostatic particle code and the 2D

Poisson equation is to be solved using the Finite Element Method. Starting from the weak form and using

the splines for both basis and test functions, the electrostatic field potential together with its gradient and

the right hand side can be computed from

φ(x, y) =
∑

ij

cij Λi(x)Λj(y)

∂φ

∂x
=

∑

ij

cij Λ
′

i(x)Λj(y)

∂φ

∂y
=

∑

ij

cij Λi(x)Λ
′

j(y)

Sij =

Np
∑

µ=1

qµΛi(xµ)Λj(yµ),

(1)

where cij are the solutions of the discretized Poisson equation and {xµ, yµ} are the coordinates of the Np

simulation particles. At each time step, the calculation of both the field φ and its gradient (field interpolation)

for the particle pusher and the construction of the RHS Si (charge assignment) involve thus the computation

of a large number of splines Λ and its derivatives Λ′.

Notice that the construction of the solver matrix requires also the calculations of the splines. This operation

is however performed only once at the initial timestep in the (most common) case where the matrix is time

independent and thus will not be considered in further these notes.

2 Computation of splines

Let consider the grid defined by xi, i = 1, . . . , N +1. Inside the interval [xi, xi+1], the p+1 non-zero splines

of degree p can be computed efficiently using its polynomial representation given by

Λi+α(x) =

p
∑

k=0

V i
kα(x− xi)

k, α = 1, . . . , p+ 1,

V i
kα =

1

k!

dk

dxk
Λi+α(x)

∣

∣

∣

∣

x=xi

.

(2)

The (p + 1)2N coefficients V i
kα are precalculated and stored during the spline initialization (in routine

SET SPLINE) by using the recurrence relation [1] to compute the spline and all its p derivatives. Note that

for periodic splines on an equidistant mesh, only (p+1)2 coefficients Vkα are required since the splines have

translational invariance.



3. Field interpolation 2

For a polynomial P (x) = a0 + a1x+ . . .+ apx
p, its value can be calculated together with it first derivative,

using Horner’s rule as:

f = a(p)

fp = f

DO i=p-1,1,-1

f = a(i) + x*f

fp = f + x*fp

END DO

f = a(0) + x*f

showing that exactly 4p − 2 floating operations (flops) per point are required. If only the value of the

polynomial is needed, only 2p flops per point are required.

3 Field interpolation

3.1 1D case

Let considered first the 1D case. The spline expansion of φ for xi ≤ x < xi+1 are expressed as

φ(x) =

p
∑

α=0

ci+αΛi+α(x). (3)

To calculate the field using this spline expansion, p+1 splines have to be first calculated followed by the sum

above, which yields a total cost of 2(p + 1)2 ∼ 2p2 flops per point. This cost can be reduced by observing

that φ(x) is a piecewise polynomial (PP) of degree p in each interval. Its PP coefficients can be obtained

from

φ(x) =

p
∑

α=0

ci+α

p
∑

k=0

V i
kα(x− xi)

k

=

p
∑

k=0

Πi
k(x− xi)

k, Πi
k =

p
∑

α=0

ci+αV
i
kα

(4)

Once the N(p+ 1) PP coefficients Πi
k have been calculated from the spline expansion coefficients ci+α, only

2p flops per point are required to obtain the field value, usingthe Horner’s rule described previously.

3.2 2D case

Extension for the spline expansion and the PP representation for φ(x, y) is straightforwards and yields, for

xi ≤ x < xi+1, yj ≤ y < yj+1:

φ(x, y) =

p1
∑

α=0

p2
∑

β=0

ci+α,j+βΛi+α(x)Λj+β(y)

φ(x, y) =

p1
∑

k=0

p2
∑

l=0

Πij
kl(x− xi)

k(y − yj)
l, Πij

kl =

p1
∑

α=0

p2
∑

β=0

ci+α,j+βV
i
kαV

j
lβ ,

(5)

where V i
kα and V j

lβ are the PP coefficients of the splines Λi+α(x) and Λj+β(y) respectively. Assuming the

same spline order p in both x and y, the flop counts per point for the 2 representations are respectively

2(3p+ 2)(p+ 1) ∼ 6p2 and 2p(p+ 2) ∼ 2p2, while the storages required for the spline coefficients c and the

PP coefficients Π are (N + p)2 ∼ N2 and N2(p+ 1)2 respectively.



4. Particle localization(locintv) 3

3.3 Implementation in BSPLINES

The PP representation is selected by default in BSPLINES, unless the logical keyword NLPPFORM is set

to .FALSE. when calling the spline initialization routine SET SPLINE. The flop counts per point for both

methods are summarized in the table below

1D 2D

Spline expansion 2(p+ 1)2 2(3p+ 2)(p+ 1)

PP representation 2p 2p(p+ 2)

The routine GRIDVAL computes the value of the field or one of its derivatives. The first call to this routine

computes the PP coefficients Π if NLPPFORM=.TRUE. is selected or just store the spline coefficients c in the

spline internal data otherwise. In the following calls to GRIDVAL, c should not be passed to the routines.

Notice that the PP representation requires to store the N2(p+ 1)2 PP coefficients in the 2D case, which is

still acceptable. In the 3D case, this storage requirement becomes N3(p+ 1)3 which can be prohibitive! In

this case the less efficient Spline expansion formulation should be selected.

In the particle loop, the routine GETGRAD which computes the function and all its first partial derivatives at

once should be called instead of GRIDVAL.

4 Particle localization(locintv)

In both charge assignment and field interpolation, finding in which interval of the spatial grid the particle

is localized should be first performed. This operation is trivial for the case of an equidistant mesh. For

non-equidistant mesh, an equidistant fine mesh and its mapping to the actual mesh are first constructed in

the spline initialization routine SET SPLINE and used to localize the particles in the routine LOCINTV.

5 Performances

From the considerations above, using BSPLINES to perform the charge assignment and field interpolation in

2D and 3D particle codes might result in large overheads because of the large number of calls to the routines

BASFUN to compute the splines or GETGRAD to perform the field interpolation at a single particle position.

In the following, the performances the 2D linearized gyrokinetic code GYGLES which has been adapted to

use BSPLINES are analyzed. Vectorization by grouping the particles for both charge assignment and field

interpolation is then proposed as a way to speed up these two operations when using BSPLINES.

5.1 Scalar performances

Optimization of the scalar versions of BASFUN and GETGRAD (when these routines are called with a single

particle) is performed essentially by

• Minimizing the flop counts and reducing redundant operations.

• Unrolling small loops, for example the loop over the p+1 splines that are non-zero at a given position,

for small p.

• Define all routines called by BASFUN and GETGRAD as internal procedures.

• Rearranging the memory layout of the multi-dimension array containing the PP coefficients of the

spline.



5. Performances 4

The timings of the charge and current assignment (assign), the particle pusher (push) and the main time

loop for a 5 time step run of GYGLES, on an Intel Xeon X5570 (hpcff.fz-juelich.de), using 4 MPI processes

and Intel Fortran 12.1.2 are summarized in the following table

T0(s) T1(s) T2(s) T1/T0 T2/T1

assign 1.454E+01 2.126E+01 2.259E+01 1.46 1.06

push 2.536E+01 3.080E+01 3.144E+01 1.21 1.02

mainloop 4.197E+01 5.955E+01 6.149E+01 1.42 1.03

where T0 is the time in seconds obtained with the original code while T1 and T2 are the times obtained with

BSPLINES, respectively using an equidistant and non-equidistant radial mesh. In all the 3 runs, a quadratic

splines were used. The small difference between equidistant and non-equidistant mesh comes mainly from

the particle localization.

The same run on an Intel Xeon E5-2680 (helios.iferc-csc.org), using the same Intel compiler (with AVX

instructions) yields

T0(s) T1(s) T2(s) T1/T0 T2/T1

assign 1.093E+01 1.987E+01 2.086E+01 1.82 1.05

push 2.385E+01 2.868E+01 2.994E+01 1.20 1.04

mainloop 3.656E+01 5.411E+01 5.598E+01 1.48 1.03

5.2 Speed up by vectorization

As found in the last section, using external routines from BSPLINES instead of hard coding the spline

computations results in a slowing down of 40–50% for the main time loop. As will shown later, this problem

could be solved by grouping the particles and using the vectorized BASFUN and GETGRAD routines. Such

particle grouping can be done for example, by replacing the usual particle loop by the following Fortran code

fragment

nset = npart/ngroup

IF(MODULO(npt, ngroup).NE.0) nset = nset+1

i2 = 0

DO is=1,nset

i1 = i2+1

i2 = MIN(i2+ngroup,npart)

CALL basfun(x(i1:i2), ...)

END DO

where npart particles are partitioned into nset groups, each containing at most ngroup particles. Vector-

ization of the routines BASFUN and GETGRAD is achieved by moving whenever is possible the loop over the

ngroup particles into the innermost loop.

The vectorization performances shown in Fig .1 and Fig .2, respectively for BASFUN and GETGRAD are obtained

using version 12.1.2 of Intel compiler on an Intel Xeon X5570 (hpcff.fz-juelich.de). With a speedup of at least

2 for quadratic splines, the slowing down found previously in the scalar version could be likely compensated.

The new AVX instructions present in the recent Intel Xeon E5-2680 (helios.iferc-csc.org) seems to improve

somewhat the vectorization performance as shown in Fig .3 and Fig .4.



5. Performances 5

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

Number of grouped points

B
A

S
F

U
N

 V
ec

to
riz

at
io

n 
S

pe
ed

 U
p

HPCFF, Quadratic Splines

 

 

Periodic Splines

Non−perodic Splines

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

Number of grouped points

B
A

S
F

U
N

 V
ec

to
riz

at
io

n 
S

pe
ed

 U
p

HPCFF, Cubic Splines

 

 

Periodic Splines

Non−perodic Splines

Figure 1: In this test, 105 particles are distributed randomly on an equidistant mesh of 64 intervals. On each

point, all the p+1 splines are computed. The particle localization routine locintv is included in the timing.

In order to have a good statistics in the measurements, 1′000 iterations of the particle loop are considered.



5. Performances 6

10
0

10
1

10
2

10
3

10
4

10
5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of grouped points

G
E

T
G

R
A

D
 V

ec
to

riz
at

io
n 

S
pe

ed
 U

p

HPCFF, 2D case (1 periodic + 1 non−periodic), using PPFORM

 

 
Quadratic Splines
Cubic Splines

Figure 2: In this test, 105 particles are distributed randomly on an equidistant 2D (x, y) mesh of 64 × 64

intervals, where the coordinate y is periodic. On each point, the function together with its gradient are

computed, using the PP representation. The particle localization routine locintv is included in the timing.

In order to have a good statistics in the measurements, 100 iterations of the particle loop are considered.



5. Performances 7

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

Number of grouped points

B
A

S
F

U
N

 V
ec

to
riz

at
io

n 
S

pe
ed

 U
p

HELIOS, Quadratic Splines

 

 
Periodic Splines
Non−perodic Splines

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

Number of grouped points

B
A

S
F

U
N

 V
ec

to
riz

at
io

n 
S

pe
ed

 U
p

HELIOS, Cubic Splines

 

 
Periodic Splines
Non−perodic Splines

Figure 3: In this test, 105 particles are distributed randomly on an equidistant mesh of 64 intervals. On each

point, all the p+1 splines are computed. The particle localization routine locintv is included in the timing.

In order to have a good statistics in the measurements, 1′000 iterations of the particle loop are considered.



5. Performances 8

10
0

10
1

10
2

10
3

10
4

10
5

1

2

3

4

5

6

7

Number of grouped points

G
E

T
G

R
A

D
 V

ec
to

riz
at

io
n 

S
pe

ed
 U

p

HELIOS, 2D case (1 periodic + 1 non−periodic), using PPFORM

 

 
Quadratic Splines
Cubic Splines

Figure 4: In this test, 105 particles are distributed randomly on an equidistant 2D (x, y) mesh of 64 × 64

intervals, where the coordinate y is periodic. On each point, the function together with its gradient are

computed, using the PP representation. The particle localization routine locintv is included in the timing.

In order to have a good statistics in the measurements, 100 iterations of the particle loop are considered.



REFERENCES 9

References

[1] BSPLINES Reference Guide.


	Introduction
	Computation of splines
	Field interpolation
	1D case
	2D case
	Implementation in BSPLINES

	Particle localization(locintv)
	Performances
	Scalar performances
	Speed up by vectorization


