
Multigrid Solver for GBS

Trach-Minh Tran, Federico Halpern

CRPP/EPFL v1.0, June 2015

Contents

1 The PDE 2

2 Discretization 2

3 Multigrid V -cycle 3

3.1 Grid coarsening . 4

3.2 Inter-grid transfers . 5

3.3 Relaxations . 6

4 Numerical Experiments 10

4.1 V -cycle performances . 10

4.2 Effects of the mesh aspect ratio α . 13

4.3 Effects of the mixed partial derivative . 13

4.4 Using the damped Jacobi relaxation . 13

4.5 Matrix storage . 14

5 Modified PDE 16

6 Parallel Multigrid 16

6.1 Distributed grid coarsening . 16

6.2 Matrix-free formulation . 17

6.3 Inter-grid transfers . 18

6.3.1 Restriction . 18

6.3.2 BC for the restriction operator . 18

6.3.3 Prolongation . 18

6.4 Relaxations . 18

6.5 Local vectors and stencils . 18

6.6 Numerical Experiments . 19

6.6.1 Strong scaling . 19

6.6.2 Weak Scaling . 20

1. The PDE 2

7 Non-homogeneous Boundary Conditions 21

7.1 Non-homogeneous Dirichlet Conditions . 21

7.2 Non-homogeneous Neumann Conditions . 21

7.3 The NNDD test problem . 23

7.4 Local relaxation methods . 24

8 Performance of the Stencil Kernel on different platform 26

9 Hybrid MPI+OpenMP PARMG (r599) 29

9.1 Parallel efficiency on single node . 29

9.2 Hybrid efficiency on multi-nodes . 30

9.3 Summary and conclusions . 30

1 The PDE

The PDE considered is
[

∂2

∂x2
+ τ

∂2

∂x∂y
+

∂2

∂y2
− a(x, y)

]

u(x, y) = f(x, y), 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. (1)

On the four boundaries, homogeneous Dirichlet boundary condition u = 0 as well as Neumann boundary

condition ∂u/∂n = 0 can be applied.

2 Discretization

The grid points (xi, yj) are defined by

xi = ihx = i
Lx

Nx
, i = 0, . . . , Nx

yj = jhy = j
Ly

Ny
, j = 0, . . . , Ny

(2)

Second order Finite Difference discretization of Eq.1 leads to the following 9-point stencil

Sij =
1

h2
x

−τα/4 α2 τα/4

1 −2(1 + α2)− h2
xaij 1

τα/4 α2 −τα/4

, where α = hx/hy. (3)

Note that the mesh aspect ratio α results in the same stencil for the anisotropic Poisson equation with

hx = hy:
∂2u

∂x2
+ α2 ∂

2u

∂y2
= f. (4)

It is shown in [1, p. 119] that this anisotropy can degrade the performance of multigrid using standard

relaxations such as Gauss-Seidel or damped Jacobi can be strongly degraded.

With the lexicographic numbering

I = j(Nx + 1) + i+ 1, (5)

3. Multigrid V -cycle 3

for the (Nx + 1)(Ny + 1) nodes, the discretized problem can be expressed as a matrix problem

Au = f , (6)

where A is a 9-diagonal matrix, assembled using the stencil defined above. Homogeneous Dirichlet boundary

condition can be imposed, for example, on the face j = 0 simply by clearing the matrix rows and columns

1, 2, . . . , Nx + 1, and setting the diagonal terms to 1.

Neumann boundary condition ∂u/∂x = 0 at the face i = 0, can be simply implemented by imposing

u−1j = u1j . The stencil for the boundary nodes (0, j) can thus be modified as

S0j =
1

h2
x

0 α2 0

0 −2(1 + α2)− h2
xa0j 2

0 α2 0

. (7)

Two model problems are considered in this report:

DDDD problem: Homogeneous Dirichlet BC at all the 4 boundaries. The analytic solution is

u(x, y) = sin
2πkxx

Lx
sin

2πkyy

Ly
, where kx, ky are positive integers. (8)

NNDD problem: Neumann boundary conditions ∂u/∂x = 0 at x = 0 and x = Lx, homogeneous Dirichlet

BC at y = 0 and y = Ly. The analytic solution is

u(x, y) = cos
2πkxx

Lx
sin

2πkyy

Ly
, where kx, ky are positive integers. (9)

In both problems, a depends only on x:

a(x, y) = exp

[

−
(x− Lx/3)

2

(Lx/2)2

]

. (10)

The sparse direct solver MUMPS [2] is used to solve (6) in order to check the convergence of the schema

described above. Fig.1 shows the expected quadratic convergence of the error with respect to hx with fixed

α = hx/hy = 0.5 for both problems, when the grid size is varied from 16× 64 to 512× 2048.

3 Multigrid V -cycle

Given an approximate uh and right hand side fh defined at some grid level represented by the grid spacing

h, the following MG V -cycle procedure

uh ←MGh(uh, fh)

will compute a new uh. It is defined recursively by the following steps:

1. If h is the coarsest mesh size,

• Direct solve Ahuh = fh

• Goto 3.

2. Else

• Relax uh ν1 times.

3. Multigrid V -cycle 4

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Nx

M
ax

 n
or

m
 o

f e
rr

or

Ny=4*Nx, Kx=Ky=4, Lx=100, Ly=800, beta=−0.01

DDDD
NNDD

N
x
−2.00

N
x
−1.99

Figure 1: Convergence of the error ‖ucalc − uanal‖∞ wrt the number of intervals in the x direction Nx for

Lx = 100, Ly = 800, kx = ky = 4, τ = 1 and Ny = 4Nx.

• f2h ← R(fh −Ahuh).

• u2h ←MG2h(u2h, f2h) µ times.

• uh ← uh +Pu2h.

• Relax uh ν2 times.

3. Return

In the procedure above, the operators R and P denote respectively the restriction (from fine to coarse grid)

and the prolongation (from coarse to fine grid). Notice that in this multigrid procedure, R applies only to

the right hand side while P applies only to the solution. The standard V (ν1, ν2) cycle is obtained by calling

this MGh procedure with fh defined at the finest grid level, a guess uh = 0 and µ = 1, while µ = 2 results

in the W (ν1, ν2) cycle.

Details on the grid coarsening, the inter-grid transfers and methods of relaxation are given in the following.

3.1 Grid coarsening

Let start with the one-dimensional fine grid defined by xi, i = 0, . . . , N , assuming that N is even. The next

coarse grid (with N/2 intervals) is obtained by simply discarding the grid points with odd indices.

In order to get a smallest coarsest grid (so that it is possible to solve cheaply the problem with a direct

method), N should be N = Nc2
L−1 where L the total number of grid levels and Nc is either 2 or a small

odd integer. As an example, the fine grid with N = 768 can have up to 9 grid levels, and a coarsest grid

with 3 intervals, see Table 1.

For a two-dimensional grid, the same procedure is applied to both dimensions. The result of such procedure

is illustrated in Fig. 2, for a 8× 4 fine grid.

3. Multigrid V -cycle 5

L N

1 2 3 5 7 9

2 4 6 10 14 18

3 8 12 20 28 36

4 16 24 40 56 72

5 32 48 80 112 144

6 64 96 160 224 288

7 128 192 320 448 576

8 256 384 640 896 1152

9 512 768 1280 1792 2304

10 1024 1536 2560 3584 4608

Table 1: Set of values of the fine grid number of intervals N to obtain a coarsest grid size at most equal to

9 with at most 10 grid levels.

rs rs rs rs rs

rs rs rs rs rs

rs rs rs rs rs

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

Figure 2: A coarse 4× 2 grid (✷) obtained from a 8× 4 fine grid (•).

3.2 Inter-grid transfers

The one-dimensional prolongation operator for the second-order FD discretization is chosen the same as the

one obtained with the linear Finite Elements [3]. For a N = 8 grid, it can be represented as a 9× 5 matrix

given by

P =

1 0 0 0 0

1/2 1/2 0 0 0

0 1 0 0 0

0 1/2 1/2 0 0

0 0 1 0 0

0 0 1/2 1/2 0

0 0 0 1 0

0 0 0 1/2 1/2

0 0 0 0 1

(11)

The restriction matrix R is simply related to P by

R =
1

2
PT =

1

2

1 1/2 0 0 0 0 0 0 0

0 1/2 1 1/2 0 0 0 0 0

0 0 0 1/2 1 1/2 0 0 0

0 0 0 0 0 1/2 1 1/2 0

0 0 0 0 0 0 0 1/2 1

. (12)

3. Multigrid V -cycle 6

For Dirichlet BC imposed on the left boundary one has to set P21 = R12 = 0, while for Dirichlet BC imposed

on the right boundary, PN,N/2+1 = RN/2+1,N = 0. Notice that these inter-grid operators are identical to

the standard linear interpolation and full weighting operators.

For a two-dimensional problem, using the property that the grid is a tensor product of two one-dimensional

grids, the restriction of the right hand side fh
ij and the prolongation of the solution u2h

ij can be computed as

f2h = Rx · fh · (Ry)T

uh = Px · u2h · (Py)T
(13)

3.3 Relaxations

Gauss-Seidel and damped Jacobi iterations are used as relaxation methods in the multigrid V cycle. In

general, Gauss-Seidel method is more efficient but much more difficult to parallelize than the Jacobi method.

It should be noted that if a(x, y) in Eq. 1 is non-positive, both relaxations diverge! This can be seen by

considering the following one-dimensional FD equation with uniform a:

uj−1 − (2 + ah2)uj + uj+1 = h2fj . (14)

Using the damped Jacobi relaxation, the error ǫ
(m)
j ≡ uanal(xj)− u

(m)
j at iteration m+ 1 is given by

ǫ
(m+1)
j =

ω

2 + h2a
(ǫ

(m)
j−1 + ǫ

(m)
j+1) + (1− ω)ǫ

(m)
j . (15)

Performing a local mode analysis (or Fourier analysis) (see [1, p. 48]), assuming that ǫ
(m)
j = A(m)eijθ, where

θ is related to the mode number k by θ = 2πk/N , the amplification factor G(θ) is obtained as

G(θ) =
A(m+ 1)

A(m)
=

2ω

2 + h2a
cos θ + (1− ω)

= G0(θ)−
ωh2a

2 + h2a
cos θ ≃ G0(θ)−

ωh2a

2
cos θ,

G0(θ) = 1− 2ω sin2
θ

2
,

(16)

where G0(θ) is the amplification factor for a = 0. Note that |G0(θ)| < 1 for all θ and 0 < ω < 1 but

max
|θ|<π

|G(θ)| > 1 if a < 0.

In Gauss-Seidel relaxation method, the errors evolve as:

ǫ
(m+1)
j =

ǫ
(m+1)
j−1 + ǫ

(m)
j+1

2 + h2a
. (17)

Applying again the same Fourier analysis yields the following complex amplification factor:

G(θ) ≃ G0(θ)

(

1−
h2a

2− e−iθ

)

G0(θ) =
eiθ

2− e−iθ
, |G0(θ)| < 1

(18)

which show that the Gauss-Seidel relaxations diverge if a < 0.

Notice that when a > 0, the effect of a on the amplification is negligible and is thus ignored in the following

two-dimensional analysis. Applying the damped Jacobi scheme on the stencil (3), the error at the iteration

m+ 1 is given by:

ǫ
(m+1)
ij =

ω

2(1 + α2)

[

ǫ
(m)
i−1,j + ǫ

(m)
i+1,j + α2(ǫ

(m)
i,j−1 + ǫ

(m)
i,j+1) +

τα

4
(ǫ

(m)
i+1,j+1 + ǫ

(m)
i−1,j−1 − ǫ

(m)
i−1,j+1 − ǫ

(m)
i+1,j−1)

]

+ (1− ω)ǫ
(m)
ij .

(19)

3. Multigrid V -cycle 7

Using the two-dimensional Fourier mode expression

ǫ
(m)
ij = A(m)ei(θ1+θ2), −π < θ1, θ2 ≤ π, (20)

the amplification factor G = A(m+ 1)/A(m) is given by

G(θ1, θ2;ω, α, τ) = 1−
2ω

1 + α2

(

sin2
θ1
2

+ α2 sin2
θ2
2

+
τα

4
sin θ1 sin θ2

)

. (21)

The errors in Gauss-Seidel method, assuming a lexicographic ordering for the unknowns (increasing first i

then j), are updated according to

ǫ
(m+1)
ij =

1

2(1 + α2)

[

ǫ
(m+1)
i−1,j + ǫ

(m)
i+1,j + α2(ǫ

(m+1)
i,j−1 + ǫ

(m)
i,j+1) +

τα

4
(ǫ

(m)
i+1,j+1 + ǫ

(m+1)
i−1,j−1 − ǫ

(m)
i−1,j+1 − ǫ

(m+1)
i+1,j−1)

]

.

(22)

The Fourier mode analysis then leads to the following complex amplification factor

G(θ1, θ2;α, τ) =
eiθ1 +

(

α2 + i
τα

2
sin θ1

)

eiθ2

2(1 + α2)−
[

e−iθ1 +
(

α2 − i
τα

2
sin θ1

)

e−iθ2

] . (23)

Curves of G for fixed θ2 are plotted in Fig. 3 showing convergence (max |G| < 1) for τ = −1, 0, 1, 2, using the

damped Jacobi method. The same conclusions are obtained for Gauss-Seidel relaxations as shown in Fig. 4

where the absolute values of the complex amplification factor G are plotted. However, for larger |τ | > 2,

both methods diverge as can be seen in Fig. 5.Notice however that the PDE (1) is elliptic only when |τ | < 2

is satisfied!

In summary, the local mode analysis predicts that

• Negative values of the coefficient a and large mixed derivative (|τ | > 2) can make both damped Jacobi

and Gauss-Seidel relaxations diverge.

• Positive values of a can decrease the amplification factor (improving thus the convergence rate) but its

contributions h2a decrease for increasing grid resolution.

These predictions will be checked against numerical experiments in the next section.

3. Multigrid V -cycle 8

−4 −2 0 2 4
−1

−0.5

0

0.5

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r

omega = 0.8, tau = 0.0, alpha = 1.00

−4 −2 0 2 4
−1

−0.5

0

0.5

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r

omega = 0.8, tau = −1.0, alpha = 1.00

−4 −2 0 2 4
−1

−0.5

0

0.5

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r

omega = 0.8, tau = 1.0, alpha = 1.00

−4 −2 0 2 4
−1

−0.5

0

0.5

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r

omega = 0.8, tau = 2.0, alpha = 1.00

Figure 3: Amplification factor for damped Jacobi relaxations with ω = 0.8 and α = hx/hy = 1 and

τ = −1, 0, 1, 2 displayed as curves of constant θ2. θ2 = 0 on the green curve and π on the red curve.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = 0.0, alpha = 1.00

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = −1.0, alpha = 1.00

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = 1.0, alpha = 1.00

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = 2.0, alpha = 1.00

Figure 4: Absolute value of the amplification factor for Gauss-Seidel relaxations with α = hx/hy = 1 and

τ = −1, 0, 1, 2, displayed as curves of constant θ2. θ2 = 0 on the green curve and π on the red curve.

3. Multigrid V -cycle 9

−4 −2 0 2 4
−1

−0.5

0

0.5

1

1.5

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
Ja

co
bi

omega = 0.8, tau = 3.0, alpha = 1.00

−4 −2 0 2 4
−1

−0.5

0

0.5

1

1.5

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
Ja

co
bi

omega = 0.8, tau = 5.0, alpha = 1.00

−4 −2 0 2 4
0

0.5

1

1.5

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = 3.0, alpha = 1.00

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

θ
1

A
m

pl
ifi

ca
tio

n
F

ac
to

r
fo

r
G

au
ss

−
S

ei
de

l

tau = 5.0, alpha = 1.00

Figure 5: Amplification factor for Jacobi (left) and Gauss-Seidel (right) relaxations for |τ | = 3, 5, α =

hx/hy = 1, displayed as curves of constant θ2. θ2 = 0 on the green curve and π on the red curve.

4. Numerical Experiments 10

4 Numerical Experiments

In the following numerical experiments, we look at the convergence rate of the residual norm and the error

norm which are defined at the iteration m by

r(m) = ‖f −Au(m)‖∞,

e(m) = ‖u(m) − uanal‖∞.
(24)

The iterations are stopped when the number of iterations reach an user supplied maximum of iterations or

when the residual norm is smaller than either a given relative tolerance rtol [4, p. 51] or absolute tolerance

atol:

r(m) < rtol · (‖A‖∞ · ‖u
(m)‖∞ + ‖f‖∞),

r(m) < atol.
(25)

An additional stopping criteria consists of stopping the iterations when the change of the discretization error

between successive iteration is small enough:

e(m) − e(m−1)

e(m−1)
< etol. (26)

4.1 V -cycle performances

Table 2 shows the numbers of V -cycles required to reach the relative tolerance rtol = 10−8. In these runs

where α = 0.5, τ = 1 and a(x, y) given by Eq. 10, we observe that the biggest improvement is obtained at

ν1 = ν2 = 2. For larger ν1, ν2, the number of required iterations is relatively insensitive to the grid sizes. As

can be seen in Fig. 6 which plots the evolution of the error e(m), it is clear that the level of discretization

error has been largely reached. Finally the times used by these runs are shown in Fig. 7 and Fig. 8 where

the times spent in the direct solver using MUMPS [2] are included for comparison. For the 512× 2048 grid

(the largest case using the direct solver), the multigrid V (3, 3) is about 30 times faster!

DDDD problem NNDD problem

Grid size V (1, 1) V (2, 2) V (3, 3) V (4, 4) V (1, 1) V (2, 2) V (3, 3) V (4, 4)

16× 64 3 2 2 1 4 2 2 1

32× 128 5 3 2 2 5 3 2 2

64× 256 7 4 3 3 7 4 3 3

128× 512 10 6 4 4 10 6 5 4

256× 1024 11 6 5 4 11 6 5 4

512× 2048 11 6 5 4 11 6 5 4

1024× 4096 10 6 4 4 10 6 4 4

1536× 6144 9 6 4 4 9 5 4 3

Table 2: Multigrid V -cycle results for the DDDD and NNDD model problems with kx = ky = 4, Lx = 100,

Ly = 800, τ = 1 and a(x, y) given by Eq. 10. Shown are the numbers of multigrid V -cycles required to reduce

the relative residual norm to less than 10−8 for different grid sizes and numbers of pre and post relaxation

sweeps. Gauss-Seidel relaxation is used. The coarsest grid size of the 1536× 6144 case is 3× 12 while all the

others have a coarsest grid of size 2× 8.

The fittings of the obtained data show that the multigrid V cycle cost scales almost linearly with the number

of unknowns N = (Nx + 1)(Ny + 1) (as does the backsolve stage of MUMPS) while the total direct solve

time scales as N1.4.

4. Numerical Experiments 11

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

N
or

m
 o

f e
rr

or

NNDD, Lx=100, Ly=800, β=−0.01, V(2,2), relax=gs, KX=KY=4, τ=1

512x2048
256x1024
128x512
64x256

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

N
or

m
 o

f e
rr

or

DDDD, Lx=100, Ly=800, β=−0.01, V(2,2), relax=gs, KX=KY=4, τ=1

512x2048

256x1024

128x512

64x256

Figure 6: Performance of the V (2, 2)-cycle using the Gauss-Seidel relaxation scheme for the DDDD (upper

curve) and NNDD (lower curve) problem. The relative tolerance rtol is set to 10−8 the coarsest grid size for

all the problem size is fixed to 2× 8.

4. Numerical Experiments 12

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Problem size N=(Nx+1)*(Ny+1)

E
la

ps
ed

 T
im

e
(s

)

DDDD problem, Ny=4*Nx, Kx=Ky=4, crpppc220

Direct (MUMPS)

MG V(1,1)

MG V(2,2)

MG V(3,3)

MG V(4,4)

Backsolve (MUMPS)

N1.39 N1.05

N1.05

Figure 7: Times used by the multigrid V cycles for the runs reported in Table 2 for the DDDD problem. The

last 6 V (3, 3) data points are used for the multigrid fit. The MUMPS direct solver’s cost is included for

comparison. All the timing results are obtained on an Intel Nehalem i7 processor, using the Intel compiler

version 13.0.1 and MUMPS-4.10.0.

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Problem size N=(Nx+1)*(Ny+1)

E
la

ps
ed

 T
im

e
(s

)

NNDD problem, Ny=4*Nx, Kx=Ky=4, crpppc220

Direct (MUMPS)

MG V(1,1)

MG V(2,2)

MG V(3,3)

MG V(4,4)

Backsolve (MUMPS)

N1.39 N1.05

N1.03

Figure 8: As in Fig. 7 for the NNDD problem.

4. Numerical Experiments 13

4.2 Effects of the mesh aspect ratio α

From Table 3, one can observe that the required number of V (2, 2) cycles increase quickly when α < 0.5

and α > 2. Advanced relaxation methods and coarsening strategies [5, chap. 7] can solve this performance

degradation but are generally more difficult to parallelize.

α DDDD NNDD

0.125 19 22

0.25 12 12

0.5 6 6

1.0 5 5

2.0 7 7

4.0 20 19

Table 3: Effects of the mesh aspect ratio α = hx/hy on the number of V (2, 2) cycles required to reach

rtol = 10−8 for DDDD and NNDD model problems. The listed α’s are obtained by fixing Nx = 256, Ny = 1024,

Lx = 100 and varying Ly.

4.3 Effects of the mixed partial derivative

When |τ | > 2, Table 4 shows that the multigrid V -cycle diverge, as predicted from the local mode analysis

based on the amplification factor given in Eq. 23. Although, a non-negative coefficient a has a stabilizing

effect, the latter disappears already for a 256× 1024 grid.

Grid size τ = −3 τ = −2 τ = −1 τ = 0 τ = 1 τ = 2 τ = 3

DDDD

128× 512(a = 0) - 39 7 5 7 38 -

128× 512 16 6 5 4 4 6 17

256× 1024 - 8 5 4 5 7 -

512× 2048 - 9 5 4 5 9 -

NNDD

128× 512(a = 0) - 42 7 5 7 41 -

128× 512 13 6 5 4 5 5 13

256× 1024 - 7 5 4 5 7 -

512× 2048 - 7 5 4 5 7 -

Table 4: Effects of the mixed derivative term τ on the performances of the V (3, 3) cycle. The dashes indicate

that the V -cycle diverges. In theses runs, a(x, y) is given by Eq. 10 except for the cases where it is set to 0.

Notice the stabilizing effect of a 6= 0 for the 128× 512 grid at τ = ±3.

4.4 Using the damped Jacobi relaxation

The optimum Jacobi damping factor ω can be determined by minimizing the smoothing factor defined as

the maximum amplification coefficient (21) restricted to the oscillatory modes :

µ(ω, α, τ) = max
(θ1,θ2)∈Ω

|G(θ1, θ2, ω, α, τ)|, Ω = [|θ1| > π/2]
⋃

[|θ2| > π/2]. (27)

Results from numerical computation of (27 are shown in Fig. 9. An analytic expression for τ = 0 assuming

α ≤ 1 is derived in [6, p. 119]:

µ(ω, α, τ = 0) = max

(

|1− 2ω| ,

∣

∣

∣

∣

1−
α2

1 + α2
ω

∣

∣

∣

∣

)

,

µopt =
2 + α2

2 + 3α2
at ωopt =

2 + 2α2

2 + 3α2
. (28)

4. Numerical Experiments 14

Notice that the smoothing factor increases as α departs from 1 and for increasing τ .

For Gauss-Seidel relaxation, the same numerical procedure applied to (23) yields a smoothing factor µ equal

to respectively 0.5, 0.68 and 0.70 for the three cases shown in Fig. 9, which result in a better smoothing

property than the damped Jacobi relaxation.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

ω

µ

α=1, τ=0

α=0.5, τ=0

α=0.5, τ=1

Figure 9: The smoothing factor for damped Jacobi relaxation for different values of α and τ .

Numerical experiments with the reference case (α = 0.5, τ = 1, a(x, y) given by Eq. 10) and the 128 × 512

grid using damped Jacobi relaxation, are shown in Table 5 and confirm that ω = 0.9 is the optimum damping

factor and that it is less efficient than the Gauss-Seidel relaxation, in agreement with the Fourier analysis.

ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

DDDD 12 10 9 8 7 15

NNDD 12 11 9 8 7 18

Table 5: The number of V (3, 3) cycles required to obtain rtol = 10−8 versus the Jacobi damped factor ω.

The grid size is 128× 512 with α = 0.5, τ = 1 and a(x, y) given by Eq. 10.

4.5 Matrix storage

Initially the Compressed Sparse Row storage format (CSR or CRS) (see [4, p. 58–59]) was used to store the

discretized finite difference matrix. With this choice, the CPU time used by the matrix construction (and

boundary condition setting) is found to be always larger than the multigrid solver time as shown in Fig. 10.

Fortunately, switching to the Compressed Diagonal Storage (CDS), where the 9 diagonal structure of the

matrix is fully exploited, the matrix construction time is considerably reduced as shown in the same figure.

On the other hand, no difference in the multigrid solver performance is noticeable between the two matrix

storage.

4. Numerical Experiments 15

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

N
x

C
P

U
 ti

m
e

(s
)

DDDD problem

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

N
x

C
P

U
 ti

m
e

(s
)

NNDD problem

Mat. const. (CDS)

Mat. const. (CSR)

MG V(3,3)

Mat. const. (CDS)

Mat. const. (CSR)

MG V(3,3)

Figure 10: CPU time used by the matrix construction for CSR and CDS matrix storage compared to the

multigrid V (3, 3) cycle time for the DDDD and NNDD model problems. The timing is obtained using the

same conditions as in Fig. 7.

5. Modified PDE 16

5 Modified PDE

Here, the following modified PDE is considered:

[

∂2

∂x2
+ τ

∂2

∂x∂y
+ (1 + τ2/4)

∂2

∂y2
− a(x, y)

]

u(x, y) = f(x, y), 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. (29)

This PDE which is obtained from the ŝ − α model [6, Eq.10] is elliptic for any value of τ . The resulting

stencil is changed from the previous stencil 3 to

Sij =
1

h2
x

−τα/4 α2(1 + τ2/4) τα/4

1 −2
[

1 + α2(1 + τ2/4)
]

− h2
xaij 1

τα/4 α2(1 + τ2/4) −τα/4

. (30)

Note that the anisotropy of the resulting Finite Difference discretization is now α2(1 + τ2/4) and could be

controlled by adjusting both the mesh aspect ratio α and the shear term τ .

Numerical calculations show that the multigrid V -cycles do always converge, as shown in Table 6.

Grid size τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16

DDDD

128× 512 4 4 5 6 9 20 (6)

256× 1024 4 4 5 6 11 25 (8)

512× 2048 4 4 5 7 12 29 (8)

NNDD

128× 512 4 4 4 5 8 17 (5)

256× 1024 4 5 5 5 8 19 (6)

512× 2048 4 4 4 5 7 18 (6)

Table 6: Effects of the mixed derivative term τ on the performances of the V (3, 3) cycle. In theses runs,

a(x, y) is given by Eq. 10. The mesh aspect ratio α = 0.5 was used. On the last column and shown in

parenthesis are the numbers of V (3, 3) cycles when α is reduced to 0.125 by increasing the length Ly while

keeping all the other values fixed.

6 Parallel Multigrid

In order to maximize the parallel efficiency and the flexibility of utilization, a two-dimensional domain

partition scheme is chosen to parallelize the multigrid solver. As shown below, generalization of this procedure

for higher dimensions is straightforward.

6.1 Distributed grid coarsening

The coarsening algorithm can be summarized as follow:

• Partition the grid points on each dimension at the finest grid level, as evenly as possible.

• The range for each sub-grid, using global indexing is thus specified by [s, e], with s = 0 for the first

sub-grid and e = N for the last sub-grid, N being the number of grid intervals.

• The next coarse sub-grid is thus obtained by discarding all the odd indexed grid points, as in the serial

case.

• This process can continue (as long as the total of number of intervals is even) until there exists a

prescribed minimum number of grid points on any sub-grid is reached.

6. Parallel Multigrid 17

6.2 Matrix-free formulation

Using standard matrix to represent the discretized 2D (or higher dimensional) operators imply an one-

dimensional numbering of the grid nodes. For example on a 2D Nx×Ny grid, the 1D numbering of the node

(xi1 , yi2) could be defined as

k = i1 + i2 ×Nx, i1 = 0 : Nx, i2 = 0 : Ny.

However, using 2D domain partition defined by

i1 = s1 : e1, i2 = s2 : e2, (31)

with s = (s1, s2) and e = (e1, e2) denoting respectively the starting and ending indices of a rectangular

sub-domain, result in a non-contiguous set of the indices k and in a complicate structure of the partitioned

matrix for the linear operator.

On the other hand, using the stencil notation introduced in [5, chap. 5.2] based on the multidimensional

node labeling as defined by (31) for a 2D problem, one can define a simple data structure for the partitioned

operator, A(i, δ), where the d-tuple i = (i1, . . . , id) represents a node of the d-dimensional grid and the

d-tuple δ = (δ1, . . . , δd), the distance between the connected nodes. The result of Au can thus be defined as

(Au)i =
∑

δ∈Zd

A(i, δ)ui+δ, i = s : e. (32)

In (32), the sum is performed over all indices δ such that A(i, δ) is non-zero. For the 2D nine-point stencil

defined in (3), the 2-tuple δ can be specified as the 9 columns of the following structure matrix

Sδ =

(

0 −1 0 1 −1 1 −1 0 1

0 −1 −1 −1 0 0 1 1 1

)

. (33)

In the general case of a d-dimensional grid and N point stencil, Sδ is a d × N matrix. By noting that the

subscript i+ δ of u on the right hand side of (32) should be in the range [0, N] only for sub-domains which

are adjacent to the boundary, one can deduce that for a fixed δ, the lower and upper bounds of the indices

i should be

imin = max(0,−δ, s),

imax = min(N,N − δ, e)
(34)

where N = (N1, N2, . . . , Nd) specify the number of intervals, since, for sub-domains not adjacent to the

boundary, u should include values at the ghost cells s− g and e+ g where g is given by

g = max |Sδ| (35)

with the operator max taken along the rows of the matrix. The formula defined in (32) can then be

implemented as in the pseudo Fortran code

do k=1,SIZE(Sδ , 2) ! loop over the s t e n c i l po in t s

δ = Sδ (: , k)

lb = MAX(0 ,−δ ,s)

ub = MIN(N ,N − δ , e)

do i=lb , ub

Au(i) = Au(i) + A(i , δ)∗u(i+δ)

enddo

enddo

On the other hand, if the values of u at the ghost cells of the sub-domains adjacent to the boundary are set

to 0

u−g = uN+g = 0,

the lower and upper bounds of the inner loop can be simply set to lb = s and ub = e. Note that the inner

loop should be interpreted as d nested loops over the d-tuple i = (i1, . . . , id) for a d-dimensional problem.

6. Parallel Multigrid 18

6.3 Inter-grid transfers

6.3.1 Restriction

Using the definition in the first equation of (13) together with (12), the 2D restriction operator can be

represented by the following 9-point stencil:

Ri =
1

16

1 2 1

2 4 2

1 2 1

, (36)

and the restriction of f can be computed as

f̄i = (Rf)i =
∑

δ∈Z2

R(i, δ)f2i+δ, i = s̄ : ē, (37)

where s̄, ē denote the partitioned domain boundary indices on the coarse grid, using the same algorithm

described previously.

6.3.2 BC for the restriction operator

Dirichlel boundary conditions can be imposed by modifying the restriction stencil on each of the four

boundaries as follow:

R0,. =
1

16

1 2 0

2 4 0

1 2 0

, RNx,. =

1

16

0 2 1

0 4 2

0 2 1

, R.,0 =

1

16

0 0 0

2 4 2

1 2 1

, R.,Ny

=
1

16

1 2 1

2 4 2

0 0 0

.

(38)

With the natural Neumann BC, no change of the restriction operator is needed.

6.3.3 Prolongation

Stencil notation for prolongation operators is less obvious to formulate, see [5, chap. 5.2]. A more straight-

forward implementation is obtained in the 2D case, by simply applying bilinear interpolation on the coarse

grid :

(Pū)2i = ūi,

(Pū)2i+e1 = (ūi + ūi+e1)/2, (Pū)2i+e2 = (ūi + ūi+e2)/2,

(Pū)2i+e1+e2 = (ūi + ūi+e1 + ūi+e2 + ūi+e1+e2)/4,

(39)

6.4 Relaxations

While the Gauss-Seidel proves to be more efficient, the damped Jacobi method, at least for a first version of

the parallel multigrid solver, is used because it is straightforward to parallelize. The same undamped Jacobi

(with ω = 1) with a few number of iterations is also used to solve the linear system at the coarsest mesh as

prescribed by the multigrid V -cycle procedure defined in section 3.

6.5 Local vectors and stencils

All local vectors (used to represent solutions or right-hand-sides) contain ghost cells and are implemented

using 2D arrays, for example

sol(s(1)-1:e(1)+1,s(2)-1:e(2)+1)

6. Parallel Multigrid 19

for the solution vector.

The partitioned stencils are defined only for the local grid points, without the ghost cells. Thus, before each

operation on the local vectors, an exchange (or update) of the values on the ghost cells is performed.

As a result, all the memory required by the solver is completely partitioned, except for the space used by

the ghost cells.

6.6 Numerical Experiments

In this section, all the numerical experiments are conducted on helios.iferc-csc.org, using the Intel

compiler version 13.1.3 and bullxpmi-1.2.4.3. The stopping criteria for the V -cycles is based on the absolute

and relative residual norms as well as the discretization error norm as defined in section 4. In cases where

the analytic solution is not known, the latter can be replaced by some norm of the solution.

6.6.1 Strong scaling

0 10 20 30
10

−2

10
−1

10
0

Number of MPI Procs

W
al

l T
im

e(
s)

Strong Scaling on Helios: DDDD, 256x1024

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Number of MPI Procs

S
pe

ed
 U

p
V(3,3), rtol=10−10, Jacobi, ω=0.9, DIRECT=5

Figure 11: DDDD problem for a 256× 1024 size, using multigrid V (3, 3) cycles. Different times for a given

number of processes are obtained with different combinations of processes in each dimension. The number

of grid levels are fixed to 6. Five Jacobi iterations are used at the coarsest grid.

Here 2 fixed problem sizes are considered:

• A small size with the (fine) grid of 256× 1024 shown in Fig. 11 and

• a larger size of 512× 2048 in Fig. 12.

In both cases rtol = 10−8 and etol = 10−3. It was checked that the results do not change when more than

5 Jacobi iterations are used at the coarsest mesh. Notice that for the small problem, the parallel efficiency

starts to degrade at 32 MPI processes while for the larger case, this happens after 64 MPI processes. This

can be explained by the ghost cell exchange communication overhead: denoting N1 and N2, the number of

6. Parallel Multigrid 20

0 20 40 60
10

−2

10
−1

10
0

10
1

Number of MPI procs

W
al

l t
im

e(
s)

Strong Scaling on Helios: DDDD, 512x2048

0 20 40 60
0

10

20

30

40

50

60

Number of MPI procs
S

pe
ed

 U
p

Jacobi, ω=0.9, rtol=10−8, levels=6, DIRECT=5

Figure 12: DDDD problem for a 512× 2048 size using multigrid V (3, 3) cycles. The red marker on the left

shows the time for the serial multigrid solver. Different times for a given number of processes are obtained

with different combinations of processes in each dimension. The number of grid levels are fixed to 6. Five

Jacobi iterations are used at the coarsest grid.

grid points in each direction and P1 and P2 the number of MPI processes in each direction, the ratio S/V

between the number of ghost points and interior grid points for each local subdomains can be estimated as

S/V ≃
2(N1/P1 +N2/P2)

N1N2/P1P2
= 2 (P1/N1 + P2/N2) . (40)

This ratio increases as the number MPI processes increases while keeping the problem size fixed. On very

coarse grids, this communication cost can become prohibitive. For this reason, in all the runs shown here,

the number of grid points on each direction for the coarsest grid is limited to 2.

6.6.2 Weak Scaling

According to Eq. 40, varying the problem size together with the number of MPI processes by keeping N1/P1

and N2/P2 constant should yield a constant scaling, provided that the convergence rate does not depend on

the problem sizes. The results for the DDDD and NNDD problems are shown in Fig. 13 and Fig. 14. The left

part of the figures shows that the convergence rate depends only weakly on the problem sizes, which leads

indeed to a (almost) constant time obtained for numbers of MPI processes P between 16 and 1024 . The

reason for the good timings for smaller P is simply that there are only 2 ghost cell exchanges for P = 2× 2

(instead of 4 for P ≥ 16) and that there is no exchange for P = 0.

7. Non-homogeneous Boundary Conditions 21

0 2 4 6 8
10

−10

10
−5

10
0

Number of V−cycles

R
es

id
ua

l N
or

m

Weak Scaling on Helios: DDDD, rtol=10−10

0 2 4 6 8
10

−10

10
−5

10
0

Number of V−cycles

D
is

cr
et

iz
at

io
n

E
rr

or

10
0

10
2

10
4

10
−1

10
0

10
1

Number of MPI procs

W
al

l T
im

e(
s)

Jacobi relaxation with ω=0.9, levels=7

256x1024

512x2048

1024x4096

2048x8192

4096x16384

8192x32768

Figure 13: Weak scaling for a DDDD problem, using multigrid V (3, 3) cycles. The number of grid levels are

fixed to 7. The solver for the coarsest grid uses 5 Jacobi iterations except for the 2 largest cases which require

respectively 20 and 100 iterations to converge. The 2 sets of curves on the right figure show respectively the

timings with and without the calculations of the residual norm and discretization error which require both

a global reduction.

7 Non-homogeneous Boundary Conditions

7.1 Non-homogeneous Dirichlet Conditions

Non-homogeneous Dirichlet boundary conditions can be imposed on all the Dirichlet faces simply by clearing,

as for the homogeneous case, the matrice rows and columns and setting its diagonal term to 1. Moreover,

the corresponding corresponding right-hand-side should be set to:

f0,j = DW (yj), fNx,j = DE(yj), j = 0, . . . , Ny,

fi,0 = DS(xi), fj,Ny
= DN (xi), i = 0, . . . , Nx,

(41)

where DW , DE , DS , DN are the values of u at the 4 Dirichlet faces. As for the homogeneous Dirichlet BC,

the restriction operator should be changed as described in section 6.3.2 while the prolongation defined in

(39) remains unchanged.

7.2 Non-homogeneous Neumann Conditions

The non-homogeneous Neumann conditions at the 4 faces x = 0 can be defined as

∂u

∂x

∣

∣

∣

∣

x=0

= NW (y),
∂u

∂x

∣

∣

∣

∣

x=Lx

= NE(y),

∂u

∂y

∣

∣

∣

∣

y=0

= NS(x),
∂u

∂y

∣

∣

∣

∣

y=Ly

= NN (x).

(42)

7. Non-homogeneous Boundary Conditions 22

0 2 4 6 8
10

−10

10
−5

10
0

Number of V−cycles

R
es

id
ua

l N
or

m

Weak Scaling on Helios: NNDD, rtol=10−10

0 2 4 6 8
10

−10

10
−5

10
0

Number of V−cycles

D
is

cr
et

iz
at

io
n

E
rr

or

256x1024

512x2048

1024x4096

2048x8192

4096x16384

8192x32768

10
0

10
2

10
4

10
−1

10
0

10
1

Number of MPI procs

W
al

l T
im

e(
s)

Jacobi relaxation with ω=0.9, levels=7

Figure 14: Weak scaling for a NNDD problem, using multigrid V (3, 3) cycles. The number of grid levels are

fixed to 7. The solver for the coarsest grid uses 5 Jacobi iterations except for the 2 largest cases which require

respectively 20 and 100 iterations to converge. The 2 sets of curves on the right figure show respectively the

timings with and without the calculations of the residual norm and discretization error which require both

a global reduction.

Discretization of the BC defined above, using the central difference yields on the 4 faces

u−1,j = u1,j − 2hxN
W (yj), uNx+1,j = uNx−1,j + 2hxN

E(yj), j = 0, . . . , Ny,

ui,−1 = ui,1 − 2hyN
S(xi), ui,Ny+1 = ui,Ny−1 + 2hyN

N (xi), i = 0, . . . , Nx.
(43)

With these relations, the stencil (30) on the 4 boundaries is modified as follow

SW =
1

h2
x

0 α2(1 + τ2/4) 0

0 −2(1 + α2(1 + τ2/4))− h2
xa0,j 2

0 α2(1 + τ2/4) 0

, SE =

1

h2
x

0 α2(1 + τ2/4) 0

2 −2(1 + α2(1 + τ2/4))− h2
xaNx,j 0

0 α2(1 + τ2/4) 0

,

SS =
1

h2
x

0 2α2(1 + τ2/4) 0

1 −2(1 + α2(1 + τ2/4))− h2
xai,0 1

0 0 0

, SN =

1

h2
x

0 0 0

1 −2(1 + α2(1 + τ2/4))− h2
xai,Ny

1

0 2α2(1 + τ2/4) 0

,

(44)

while the right-hand-side should be changed according to

f0,j ←− f0,j +
2

hx

[τα

4
NW (yj−1) +NW (yj)−

τα

4
NW (yj+1)

]

,

fNx,j ←− fNx,j +
2

hx

[τα

4
NE(yj−1)−NE(yj)−

τα

4
NE(yj+1)

]

,

fi,0 ←− fi,0 +
2

hy

[τ

4α
NS(xi−1) + (1 + τ2/4)NS(xi)−

τ

4α
NS(xi+1)

]

,

fi,Ny
←− fi,Ny

+
2

hy

[τ

4α
NN (xi−1)− (1 + τ2/4)NN (xi)−

τ

4α
NN (xi+1)

]

.

(45)

7. Non-homogeneous Boundary Conditions 23

7.3 The NNDD test problem

In order to test the discretization of the non-homogeneous boundary conditions as formulated above, a test

problem with the prescribed exact solution

u(x, y) = 1 + sin
2πkxx

Lx
sin

2πkyy

Ly
, where kx, ky are positive integers (46)

and the following non-homogeneous boundary conditions

∂u

∂x

∣

∣

∣

∣

x=0

=
∂u

∂x

∣

∣

∣

∣

x=Lx

= kx sin
2πkyy

Ly
,

u(x, 0) = u(x, Ly) = 1,

(47)

is solved with varying grid spacing. The discretization errors versus the number of grid intervals Nx displayed

in Fig(15 shows a quadratic convergence as expected from the second order finite differences used in both

the PDE and the Neumann boundary condition discretization.

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

NX

M
ax

 n
or

m
 o

f d
is

cr
et

iz
at

io
n

er
ro

r

Non−homogeneous NNDD problem, Ny=4*Nx, Lx=100, Ly=800, beta=−0.01

~N
x
−1.99

Figure 15: Convergence of the error ‖ucalc − uanal‖∞ wrt the number of intervals in the x direction Nx for

the non-homogeneous NNDD problem. Here, Lx = 100, Ly = 800, kx = ky = 4, τ = 1 and Ny = 4Nx.

As shown in Fig.(16), the multigrid V -cycles for the non-homogeneous problem converge with a slightly

smaller efficiency, than the homogeneous problem shown in Fig.(14).

7. Non-homogeneous Boundary Conditions 24

0 2 4 6 8 10 12
10

−5

10
0

10
5

Iterations

R
es

id
ua

l n
or

m

PRB=nndd, relax=jac, V(3,3), LEVELS=7, DIRECT SOLVE=5

0 2 4 6 8 10 12
10

−5

10
0

10
5

Iterations

N
or

m
 o

f D
is

cr
et

iz
at

io
n

E
rr

or

512x2048

2048x8192

1024x4096

Figure 16: Performances of the V (3, 3)-cycle for the non-homogeneous NNDD problem. The same parameters

in Fig.(15) are used here.

7.4 Local relaxation methods

In addition to the damped Jacobi, three methods of relaxations are added in this parallel multigrid solver:

1. The 4 color Gauss-Seidel method (RBGS).

2. The Gauss-Seidel method (GS).

3. The successive over-relaxation method (SOR).

In order to apply correctly the parallel 4 color Gauss-Seidel, a complicated ghost cell exchange has to be

performed for each sweep for each color. Here we simply apply the method locally on each subdomain with

only one ghost exchange performed at the beginning of each relaxation.

The same procedure is also used for the other 2 methods which are inherently serial. All these 3 relaxations

are thus only correct if there is only one subdomain. As a consequence, while the damped Jacobi does not

depend on the partition of the subdomains, results from these 3 methods do depend on how the domain is

partitioned.

Table 7 show however that all of the 3 approximated relaxation methods produce a much faster convergence

rate than the damped Jacobi relaxations for the NNDD test problem considered here. The performance

of the implemented solver using the 4 relaxation methods on HELIOS is compared in Fig,(17. The bad

performance of the 4 color Gauss-Seidel relaxations (RBGS) can be explained by the 4 nested loops required

to sweep each of the 4 colors.

7. Non-homogeneous Boundary Conditions 25

Grid Sizes 256× 1024 512× 2048 1024× 4096 2048× 8192 4096× 16384 8192× 32768

Process topology 1× 1 2× 2 4× 4 8× 8 16× 16 32× 32

Jacobi ω = 0.9 0.22 0.24 0.24 0.24 0.24 0.25

RBGS 0.05 0.07 0.10 0.10 0.12 0.12

GS 0.07 0.08 0.10 0.11 0.11 0.12

SOR ω = 1.2 0.04 0.05 0.07 0.07 0.07 0.08

Table 7: Reduction factor for the residuals (obtained as the geometric mean of all its values except the first

2 values) for the non-homogeneous NNDD test problem. The same parameters as in Fig.(15) are used here.

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

Number of MPI procs

W
al

l T
im

e
(s

)

Weak Scaling on HELIOS, rtol=10−10, 7 levels

Jacobi, ω=0.9
GS
RBGS
SOR, ω=1.2

16x16

8x84x4

2x2

1x1

32x32

Figure 17: Performance of the 4 relaxations on the non-homogeneous NNDD problem. The same parameters

in Fig.(15) are used here. The grid sizes used in this weak scaling run are shown in Table 7.

8. Performance of the Stencil Kernel on different platform 26

8 Performance of the Stencil Kernel on different platform

To get a feeling on the performances gained on the different platforms and how well the compilers (with

their auto-vectorization capability) support these platforms, the following Fortran 9-point stencil kernel has

been used. The OpenMP directives are used for parallelization on both Xeon and Xeon Phi while offload to

GPU card is done via the high level OpenACC directives. First touch is applied in the initialization of x

and mat.

1 ! $omp p a r a l l e l do p r i va t e (ix , i y)

2 ! $acc p a r a l l e l loop pre sent (mat , x , y) p r i va t e (ix , i y)

3 DO iy=0,ny

4 DO ix=0,nx

5 y (ix , i y) = mat(ix , iy , 1)∗ x (ix −1, iy−1) &

6 & + mat(ix , iy , 2)∗ x (ix , iy−1) &

7 & + mat(ix , iy , 3)∗ x (ix+1, iy−1) &

8 & + mat(ix , iy , 4)∗ x (ix −1, i y) &

9 & + mat(ix , iy , 0)∗ x (ix , i y) &

10 & + mat(ix , iy , 5)∗ x (ix+1, i y) &

11 & + mat(ix , iy , 6)∗ x (ix −1, i y+1) &

12 & + mat(ix , iy , 7)∗ x (ix , i y+1) &

13 & + mat(ix , iy , 8)∗ x (ix+1, i y+1)

14 END DO

15 END DO

16 ! $acc end p a r a l l e l loop

17 ! $omp end p a r a l l e l do

The performances on a Helios dual processor node and its attached Xeon Phi co-processor are shown in

Fig. 18 while the performances on a Cray XC30 CPU and its attached NVIDIA graphics card are shown in

Fig. 19. In these figures, Intel optimization flag -O3 and default Cray optimization were applied. In Fig. 20,

the speedup by vectorization is shown by comparing performances obtained with -O3 and -O1. Several

observations can be drawn from these results.

• The parallel scaling, using OpenMP is linear for both Intel and Cray compilers, when the problem

sizes fit into the 20MB cache of the Sandybridge processor. For grid sizes smaller than 32 × 8, the

overhead of thread creation dominates. When the memory footprint is larger than the cache, 4 threads

per socket already saturate the memory bandwidth.

• On the MIC, the parallel speedup scales linearly up to 60 cores with 1 thread per core. Using 2 or 3

threads per core does not help while with 4 threads, the performance even degrades.

• The MIC, using the Intel mic native mode, does not perform better than 8 cores of the Sandybridge

processor.

• Since the benefit from vectorization is quite large for the MIC (see Fig. 20), the poor parallel scalability

may be explained by the low flop intensity per thread coupled with the high overhead of the (many)

thread creation and thread synchronization.

• The NIVIDIA card, using the high level OpenACC programming style is more than 3 times faster than

8 Sandybridge cores, for grid sizes larger than 1024× 256. For smaller sizes, there are not enough flops

to keep the GPU threads busy.

8. Performance of the Stencil Kernel on different platform 27

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

nx=4ny

C
P

U
 p

er
fo

rm
an

ce
 (

G
F

lo
p/

s)
Helios, Intel−15.0.2, KMP_AFFINITY=compact

NT=1
NT=2
NT=4
NT=8
NT=16

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

nx=4ny

M
IC

 p
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

Helios, Intel−15.0.2, MIC native, KMP_AFFINITY=compact

15c,1t
30c,1t
60c,1t
60c,2t
60c,3t
60c,4t

Figure 18: Performance on the Helios dual processor (left) using the -O3 compiler option and on the MIC

(right), using the native mode -mmic.

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

nx=4*ny

C
P

U
 P

er
fo

rm
an

ce
 (

G
F

lo
p/

s)

Cray XC30 (SandyBridge, single socket 8 cores), CCE−8.3.4

NT=1
NT=2
NT=4
NT=8

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

nx=4*ny

G
P

U
 P

er
fo

rm
an

ce
 (

G
F

lo
p/

s)

Cray XC30 (NVIDIA Tesla K20X), OpenACC, CCE−8.3.4

Figure 19: Performance on a Cray XC30 single 8 core processor node (left) and the NVIDIA card (right)

using OpenACC. Default Cray Fortran compiler optimization has been used on both runs.

8. Performance of the Stencil Kernel on different platform 28

10
0

10
1

10
2

10
3

10
4

10
5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

nx=4*ny

P
er

fo
rm

an
ce

 g
ai

ne
d

w
ith

 −
O

3

Helios, CPU, −O3 versus −O1

NT=1
NT=2
NT=4
NT=8
NT=16

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

nx=4*ny

P
er

fo
rm

an
ce

 g
ai

ne
d

w
ith

 −
O

3

Helios, mic native, −O3 versus −O1

15c,1t

30c,1t

60c,1t

60c,2t

60c,3t

60c,4t

Figure 20: Performance comparison between using -O3 and -O1, on the Helios dual processor (left) and on

the MIC (right).

9. Hybrid MPI+OpenMP PARMG (r599) 29

9 Hybrid MPI+OpenMP PARMG (r599)

In this version, a straightforward parallelization is done in the subroutines jacobi, residue, prolong,

restrict and norm vec, using the OpenMP work sharing directives. The ghost cell exchange is executed by

the master thread. All the 2D arrays (solutions, RHS, etc.) are allocated and initialized once by the master

thread. Dynamic array allocations during the multigrid V -cycles are thus avoided.

To help further optimization, timings are introduced for each of the 4 multigrid components jacobi,

residue, prolong, restrict and the ghost cell exchange as well as on the recursive subroutine mg. Since

the timings of the 4 MG components include already calls to exchange, the time obtained for mg should be

equal to the sum of the 4 MG components and the extras time which includes operations in mg but not in

the 4 components:

tmg = tjacobi + tresidue + tprolong + trestrict + textras. (48)

We will see in the following sections that, in addition to these 5 contributions to tmg, there is overhead

probably due to the recursive calls of mg.

9.1 Parallel efficiency on single node

The comparison in Fig. 21 shows that the pure OpenMP version is at most 30% slower than the pure MPI

version when all the 16 cores are used but less than 10% when only one socket is used. The degradation of

the OpenMP version can be explained by the numa effects when 2 sockets are used. It is also observed that

the performance level off at 4 cores, due to the saturation of the socket memory bandwidth.

Number of cores
0 2 4 6 8 10 12 14 16

S
pe

ed
 U

p

0

2

4

6

8
Single Helios node, 1024x4096 grid

OpenMP
MPI

Number of cores
0 2 4 6 8 10 12 14 16

P
er

f.
of

 M
P

I v
er

su
s

O
pe

nM
P

0.9

1

1.1

1.2

1.3

Figure 21: Parallel performance of the 7 level V (3, 3)-cycle on a dual socket Helios node (2 × 8 cores) for

pure OpenMP and pure MPI. The non-homogeneous NNDD problem with the same parameters in Fig. 15

is considered here. The OpenMP threads and MPI tasks are placed first on the first socket before filling the

second socket, using the srun option “--cpu bind=cores -m block:block” and the environment variable

OMP PROC BIND=true.

9. Hybrid MPI+OpenMP PARMG (r599) 30

9.2 Hybrid efficiency on multi-nodes

In the following multi-node experiments, all the 16 cores on each Helios node are utilized. The numbers of

OpenMP threads per MPI process NT, the number of MPI processes per node NP, the number of nodes

NNODES and the total number of MPI processes NPtot verify thus the following relations:

1 ≤ NT ≤ 16, 1 ≤ NP ≤ 16

NT×NP = 16

NPtot = 16×NNODES/NT

(49)

The times of the different MG components and the relative contributions for the strong scaling experiments

using a 1024× 4096 grid size, are shown in Fig. 22 and Fig. 23 respectively. The following observations can

be made:

1. The exchange time increases strongly with increasing NNODES, due to smaller partitioned subdomains

and thus their larger surface/volume ratio.

2. The pure MPI (NT=1) exchange time is on the other hand reduced with NT > 1 since the local

partitioned grid becomes larger.

3. The less efficient OpenMP parallelization (numa effects, Amdahl’s law) tends to limit however this

advantage.

4. As a result, there is an optimal NT for a given NNODES: 2 for 4 and 16 nodes, 8 for 64 nodes.

5. The jacobi and residue contributions dominate largely with 0.63 ≤ tjacobi/tmg ≤ 0.83 and 0.09 ≤

tresidue/tmg ≤ 0.18.

6. The overhead (see Eq. 48) times increase with NNODES but decrease slightly for increasing NT.

The times of the different MG components and the relative contributions for the weak scaling experiments

are shown in Fig. 24 and Fig. 25 respectively. The following observations can be made:

1. A steady increase of MG times with the number of nodes can be attributed to the increase of ghost

cells exchange time, even though the amount of communications between nodes does not change.

2. The MG performance is improved slightly when NT=2 but drop drastically for NT=16. This seems

to indicate that numa effects are important here, since the array initialization is not done locally on

each thread.

3. The overhead (see Eq. 48) times are much smaller than in the strong scaling runs.

Finally, Table 8 shows that using NT > 1 decreases the memory needed by the multigrid procedure for both

strong and weak scaling runs.

9.3 Summary and conclusions

The strong scaling and weak scaling wrt NT and NNODES are summarized in Fig. 26. The speed up for

the strong scaling experiments shows a good efficiency up to 16 nodes for all NT but degrades at 64 nodes

(1024 cores) due the partitioned grid becoming too small. A good weak scaling is also obtained with an

increase in tmg of less than 10% when NNODES vary from 4 to 64. However, for NT=16, the efficiency drops

significantly, due to the non-local memory access when the OpenMP threads are placed on both sockets

(numa effect).

In order to improve the hybrid MPI+OpenMP multigrid, especially for large number of threads per MPI

process NT, the following optimizations should be done:

9
.

H
y
b
rid

M
P
I+

O
p
e
n
M

P
P
A
R
M
G

(
r
5
9
9
)

31

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.2

0.4

0.6

0.8

1

1.2
1024x4096 grid on 1 HELIOS node

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1024x4096 grid on 4 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.02

0.04

0.06

0.08

0.1

0.12
1024x4096 grid on 16 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1024x4096 grid on 64 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Figure 22: Detailed timings for strong scaling experiments using the same problem parameters as in Fig. 21, except that 5 levels are chosen to be able to run

the runs with 64 nodes.

9
.

H
y
b
rid

M
P
I+

O
p
e
n
M

P
P
A
R
M
G

(
r
5
9
9
)

32

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
1024x4096 grid on 1 HELIOS node

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
1024x4096 grid on 4 HELIOS nodes

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
1024x4096 grid on 16 HELIOS node

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
1024x4096 grid on 64 HELIOS nodes

jacobi
residue
prolong
restrict
extras

Figure 23: Relative contributions of each of the MG components for the strong scaling experiments using the same problem parameters as in Fig. 21.

9
.

H
y
b
rid

M
P
I+

O
p
e
n
M

P
P
A
R
M
G

(
r
5
9
9
)

33

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.2

0.4

0.6

0.8

1

1.2
1024x4096 grid on 1 HELIOS node

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
2048x8192 grid on 4 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
4096x16384 grid on 16 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Number of OMP threads per MPI proc
1 2 4 8 16

T
im

e
(s

)

0

0.5

1

1.5
8192x32768 grid on 64 HELIOS nodes

jacobi
residue
prolong
restrict
extras
exchange
MG

Figure 24: Detailed timings for weak scaling experiments using the same problem parameters as in Fig. 21.

9
.

H
y
b
rid

M
P
I+

O
p
e
n
M

P
P
A
R
M
G

(
r
5
9
9
)

34

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
1024x4096 grid on 1 HELIOS node

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
2048x8192 grid on 4 HELIOS nodes

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
4096x16384 grid on 16 HELIOS nodes

jacobi
residue
prolong
restrict
extras

NT
2 4 6 8 10 12 14 16

C
on

tr
ib

ut
io

ns
 (

%
)

0

20

40

60

80

100
8192x32768 grid on 64 HELIOS nodes

jacobi
residue
prolong
restrict
extras

Figure 25: Relative contributions of each of the MG components for the weak scaling experiments using the same problem parameters as in Fig. 21.

9. Hybrid MPI+OpenMP PARMG (r599) 35

NNODES NT=1 NT=2 NT=4 NT=8 NT=16

Strong Scaling

1 57.01 53.70 52.04 51.06 48.57

4 21.87 21.49 15.75 13.87 13.11

16 13.82 8.52 5.75 5.69 4.00

64 13.93 6.80 3.73 2.32 1.48

Weak Scaling

1 57.03 53.71 52.04 51.08 48.61

4 59.24 59.18 53.39 51.52 48.69

16 60.48 55.33 52.69 52.74 49.06

64 63.30 56.13 53.30 51.58 48.79

Table 8: Memory footprint per core (MB/core) for the strong scaling and weak scaling experiments.

• First touch array initialization in order to avoid numa effects.

• OpenMP parallelization of some remaining serial loops.

• Better vectorization of inner loops.

The outcome of these optimization steps is important in order to run efficiently on upcoming multicore

processors and manycore (MIC) devices.

Number of nodes
1 4 16 64

S
pe

ed
 U

p

0

10

20

30

40

50

60
Strong Scaling

NT=1
NT=2
NT=4
NT=8
NT=16

Number of nodes
1 4 16 64

M
G

 ti
m

e
(s

)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Weak Scaling

NT=1
NT=2
NT=4
NT=8
NT=16

Figure 26: Strong scaling with a 1024× 4096 grid size (left) and weak scaling (right) with grid sizes 1024×

4096, 10248× 8192, 4096× 16384 and 8192× 32768 respectively for 1, 4, 16 and 64 nodes.

REFERENCES 36

References

[1] W.L. Briggs, V.E. Henson and S.F. McCormick, A Multigrid Tutorial, Second Edition, SIAM (2000).

[2] http://graal.ens-lyon.fr/MUMPS/.

[3] Multigrid Formulation for Finite Elements,

https://crppsvn.epfl.ch/repos/bsplines/trunk/multigrid/docs/multigrid.pdf

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.

Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods, 2nd Edition , SIAM, (1994).

[5] P. Wesseling, An Introduction to Multigrid Methods, Edwards, 2004.

[6] X. Lapillonne, S. Brunner, T. Dannert, S. Jolliet, A. Marinoni et al., Phys. Plasmas 16, 032308 (2009).

http://graal.ens-lyon.fr/MUMPS/
https://crppsvn.epfl.ch/repos/bsplines/trunk/multigrid/docs/multigrid.pdf

	The PDE
	Discretization
	Multigrid V-cycle
	Grid coarsening
	Inter-grid transfers
	Relaxations

	Numerical Experiments
	V-cycle performances
	Effects of the mesh aspect ratio
	Effects of the mixed partial derivative
	Using the damped Jacobi relaxation
	Matrix storage

	Modified PDE
	Parallel Multigrid
	Distributed grid coarsening
	Matrix-free formulation
	Inter-grid transfers
	Restriction
	BC for the restriction operator
	Prolongation

	Relaxations
	Local vectors and stencils
	Numerical Experiments
	Strong scaling
	Weak Scaling

	Non-homogeneous Boundary Conditions
	Non-homogeneous Dirichlet Conditions
	Non-homogeneous Neumann Conditions
	The NNDD test problem
	Local relaxation methods

	Performance of the Stencil Kernel on different platform
	Hybrid MPI+OpenMP PARMG (r599)
	Parallel efficiency on single node
	Hybrid efficiency on multi-nodes
	Summary and conclusions

