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A multigrid formulation for finite elements is derived, using variational principles. More specifically the grid

transfer operators will be derived and tested in 1D Cartesian, cylindrical and spherical geometry for arbitrary order

B-Splines.
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1 The discretized problem

Consider the one-dimensional linear integro-differential problem

L(u) = f, 0 ≤ x ≤ L, (1)

with suitable boundary conditions. On an equidistant mesh with interval h = L/N and using the weak form

of Eq. (1), the linear system to be solved on this grid (which will be referred as the fine grid) can be written

as (see [1], [2]):

N+p
∑

i′=1

Ah
ii′u

h
i′ = bhi , Ah

ii′ =

∫ L

0

Λh
i L(Λ

h
i′)x

αdx, bhi =

∫ L

0

fΛh
i x

αdx, (2)

where p is the order the Splines Λh
i and α = 0, 1, 2 for Cartesian, cylindrical and spherical coordinates

respectively. It should be noted that the unknowns uh
i of this linear system are the expansion coefficients of

the discretized solution of the problem uh(x)

uh(x) =

N+p
∑

i′=1

uh
i′Λ

h
i′(x) (3)

and the right hand sides bhi are defined as the projection of f(x) on the same basis functions, in contrast

with the Finite Differences (FD) or Finite Volume (FV) formulations where uh
i and bhi are the nodal values

of u and f .

On the coarser mesh with interval 2h = 2L/N , the discretized linear system can be written as

N/2+p
∑

i′=1

A2h
ii′u

2h
i′ = b2hi , A2h

ii′ =

∫ L

0

Λ2h
i L(Λ

2h
i′ )x

αdx, b2hi =

∫ L

0

fΛ2h
i xαdx. (4)

2 Transfer operators

For simplicity let consider the two-grid procedure [3] which can be summarized as follow:

1. Obtain an approximation uh on the fine grid, using a Gauss-Seidel (GS) or a weighted Jacobi scheme.

This procedure is also called smoothing or relaxation.

2. Compute the residuals : rh = bh −Ahuh.

3. Obtain the residuals on the coarse mesh r2h by restriction of rh.

4. Direct solve A2he2h = r2h to obtain the error e2h = u− u2h

5. Interpolate (prolong) the error to obtain eh.

6. Correct the approximation obtained on the fine grid: uh ← uh + eh.

7. Relax on Ahuh = fh, using the previously computed uh as a guess.

Steps 3 and 5 are called grid transfers and are detailed in the following. It should be noted that the fine to

coarse transfer (restriction) applies to the right hand side bh while the prolongation applies to the expansion

coefficients u2h.
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2.1 Fine to coarse grid transfer (restriction)

The right hand side on the fine and coarse grid can be written as

bhi =

∫ L

0

fΛh
i x

αdx =

N+p
∑

i′=1

fh
i′

∫ L

0

Λh
i Λ

h
i′ x

αdx

︸ ︷︷ ︸

Mh,h

ii′

,

b2hi =

∫ L

0

fΛ2h
i xαdx =

N+p
∑

i′=1

fh
i′

∫ L

0

Λ2h
i Λh

i′ x
αdx

︸ ︷︷ ︸

M2h,h

ii′

where the expansion f(x) =
∑N+p

i=1
fh
i Λ

h
i (x) has been used. Elimination of fh leads to the definition of the

restriction matrix:

b2h = R2h
h bh, R2h

h = M2h,h(Mh,h)−1 . (5)

Note that the computation of the mass matrices Mh,h and M2h,h can be done exactly using a Gauss

integration with NG = ⌈p+ (α+ 1)/2⌉ points.

Another way to derive the restriction operator R2h
h is by noting that the basis functions Λ2h

i are piecewise

Cp−1

h polynomials with breaks on the fine grid points xi = ih, and thus can be expressed uniquely as

Λ2h
i (x) =

N+p
∑

i′=1

cii′Λ
h
i′(x), i = 1 . . . N/2 + p. (6)

Projecting this equation on the basis Λh
j then leads to

N+p
∑

i′=1

cii′

∫ L

0

Λh
i′Λ

h
j x

αdx =

∫ L

0

Λ2h
i Λh

j x
αdx, i = 1 . . . N/2 + p, j = 1, . . . N + p

=⇒ c ·Mh,h = M2h,h =⇒ c = M2h,h(Mh,h)−1 = R2h
h

and finally

Λ2h
i (x) =

N+p
∑

i′=1

(
R2h

h

)

ii′
Λh
i′(x), i = 1 . . . N/2 + p (7)

Because the expansion coefficients cii′ of Λ
2h
i (x) (rows of the restriction matrix R2h

h ) on the fine mesh basis

are unique, R2h
h should be independent of the geometry exponent α or more generally, of the definition of

the projection (or scalar product) used to calculate the restriction matrix. Furthermore, since the supports

of both Λh
i and Λ2h

i are compact, the matrix R2h
h should be sparse.

One can show that, using (7), the restriction of the fine mesh FE matrix Ah is given by

A2h = R2h
h Ah

(
R2h

h

)T
. (8)

2.2 Coarse to fine grid transfer (prolongation)

Let denote the discretized solution on the coarse mesh of A2hu2h = R2h
h bh by

u2h(x) =

N/2+p
∑

i=1

u2h
i Λ2h

i (x),

and seek for an approximated solution on the fine mesh uh

uh(x) =

N+p
∑

i=1

uh
i Λ

h
i (x).



3. Numerical results for the transfer operators 4

by prolongation of u2h (instead of solving Ahuh = bh). A reasonable solution is to minimize the square of

the error norm defined as

ǫ2 = ‖uh(x)− u2h(x)‖2 ≡

∫ L

0

[uh(x)− u2h(x)]2 xαdx,

∂ǫ2

∂uh
i

= 0 =⇒

N+p
∑

i′=1

uh
i

∫ L

0

Λh
i Λ

h
i′ x

αdx =

N/2+p
∑

i′=1

u2h
i

∫ L

0

Λh
i Λ

2h
i′ xαdx.

This yields the prolonged (or interpolated) coarse grid solution on the fine grid

uh = Ph
2hu

2h, Ph
2h = (Mh,h)−1Mh,2h = (R2h

h )T (9)

and the coarse FE matrix can be finally expressed as

A2h = R2h
h AhPh

2h (10)

2.3 An alternative derivation of grid transfer operators

Starting from the inter grid transformation of the basis functions Eq.(7), the restriction of bh and the

prolongation of u2h can be derived as follow

b2hi =

∫ L

0

fΛ2h
i xαdx =

N+p
∑

i′=1

(
R2h

h

)

ii′

∫ L

0

fΛh
i′ x

αdx =

N+p
∑

i′=1

(
R2h

h

)

ii′
bhi′ ,

u2h(x) =

N/2+p
∑

i=1

u2h
i Λ2h

i =

N+p
∑

i′=1





N/2+p
∑

i=1

(
R2h

h

)

ii′
u2h
i





︸ ︷︷ ︸

uh
i′

Λh
i′(x) =⇒ uh =

(
R2h

h

)T
u2h = Ph

2hu
2h.

3 Numerical results for the transfer operators

The prolongation matrix as defined in Eq. (9) was calculated using the BSPLINES module. A Gauss

integration with NG = ⌈p + (α + 1)/2⌉ points is used to carry out the numerical integrations. In the

following, the results are presented for linear, quadratic and cubic Splines. Since the restriction matrix

is just the transpose of the prolongation matrix, only the latter is shown. As expected, all the obtained

matrices are found to be independent of α and sparse.

During the calculations, it was checked that

• The coarse matrix computed using Eq. (10) and the transfer matrix, is identical to the matrix assembled

directly on the coarse grid.

• The sum of each row of the prolongation matrix is 1, since a constant function (u2h = 1) should remain

constant after the grid transfer.
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3.1 Linear Splines

For N = 8, the prolongation is a 9× 5 matrix given by

Ph
2h =



















1 0 0 0 0

1/2 1/2 0 0 0

0 1 0 0 0

0 1/2 1/2 0 0

0 0 1 0 0

0 0 1/2 1/2 0

0 0 0 1 0

0 0 0 1/2 1/2

0 0 0 0 1



















(11)

As expected, the prolongation matrix for linear Splines is identical to the one obtained for first order FD

discretization, where a linear interpolation is used. One can easily check that

Λ2h
1 (x) = Λh

1 (x) +
1

2
Λh
2 (x),

Λ2h
2 (x) =

1

2
Λh
2 (x) + Λh

3 (x) +
1

2
Λh
4 (x),

as expected from (7).

3.2 Quadratic Splines

For N = 8, the prolongation is a 10× 6 matrix given by

Ph
2h =





















1 0 0 0 0 0

1/2 1/2 0 0 0 0

0 3/4 1/4 0 0 0

0 1/4 3/4 0 0 0

0 0 3/4 1/4 0 0

0 0 1/4 3/4 0 0

0 0 0 3/4 1/4 0

0 0 0 1/4 3/4 0

0 0 0 0 1/2 1/2

0 0 0 0 0 1





















(12)
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3.3 Cubic Splines

For N = 10, the prolongation is a 13× 8 matrix given by

Ph
2h =




























1 0 0 0 0 0 0 0

1/2 1/2 0 0 0 0 0 0

0 3/4 1/4 0 0 0 0 0

0 3/16 11/16 1/8 0 0 0 0

0 0 1/2 1/2 0 0 0 0

0 0 1/8 3/4 1/8 0 0 0

0 0 0 1/2 1/2 0 0 0

0 0 0 1/8 3/4 1/8 0 0

0 0 0 0 1/2 1/2 0 0

0 0 0 0 1/8 11/16 3/16 0

0 0 0 0 0 1/4 3/4 0

0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 0 1




























(13)

Note that from the results shown above, it is straightforward to derive the prolongation matrix for other

number of intervals N .

4 Practical Considerations

4.1 Boundary conditions

The essential Dirichlet boundary conditions are imposed by zeroing the column and row (first column and

first row for the left boundary and last column and last row for the right boundary) of the FE matrix Ah

and putting 1 on the diagonal. The same operation should be also performed on the prolongation matrix,

preserving thus the relation (10). For non-homogeneous Dirichlet boundary conditions, the elements of

the column should be saved before the zeroing operation (for example Ah
21, A

h
31, . . . for the left boundary

condition). They will be used later to modify the right hand side:

bhi ← bhi −Ah
i1u

h
1 , i = 2, . . .

Nothing has to be done for natural boundary conditions.

4.2 Residual norm and error

The residual norm is simply defined as the Euclidean norm of the residue:

‖r‖2 = ‖b−Au‖2 =

√
√
√
√
∑

i

(

bi −
∑

i′

Aii′ui′

)2

. (14)

When the exact solution u(x) is known, the discretization error can defined as

‖e‖2 =

√
√
√
√

∫

xαdx

[
∑

i

uiΛi(x)− u(x)

]2

(15)

and computed using a Gauss quadrature. Note that for Splines of order p, ‖e‖2(h) converges to zero as

O(hp+1).
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5 The Model Problems

5.1 Cartesian geometry

The following second-order boundary value problem is considered:

−
d2

dx2
u(x) + σu(x) = sin(πkx), 0 ≤ x ≤ 1

u(0) = u(1) = 0

⇒ u(x) =
sin(πkx)

π2k2 + σ
.

(16)

Using the weak form, the FE discretized matrix and right hand side can be computed as

Aii′ =

∫ 1

0

dx [Λ′

i(x)Λ
′

i′(x) + σΛi(x)Λi′(x)] , bi =

∫ 1

0

dx sin(πkx)Λi(x). (17)

For Splines of order p, the integration is done with a ⌈p + 1/2⌉ point Gauss quadrature which is exact for

the matrix A if σ is constant.

The boundary conditions are simply imposed by setting

Aki = Aik = δik and bk = 0

for k = 1 (the first equation) and N + p (the last equation).

5.2 Cylindrical geometry

The following second-order boundary value problem is considered:

−
1

r

d

dr
r
d

dr
u(r) +

m2

r2
u(r) = j2msJm(jmsr), 0 ≤ r ≤ 1, jms = sth zero of Jm,

u(1) = 0

⇒ u(r) = Jm(jmsr).

(18)

Using the weak form, the FE discretized matrix and right hand side can be computed as

Aii′ =

∫ 1

0

rdr

[

Λ′

i(r)Λ
′

i′(r) +
m2

r2
Λi(r)Λi′(r)

]

, bi =

∫ 1

0

rdrj2ms Jm(jmsr)Λi(r). (19)

The boundary condition has only to be imposed on the last equation, using the same procedure described

for the Cartesian geometry.

It should be noted here that for m 6= 0, the matrix elements A1i and Ai1 diverge since Λ1(r) is not equal

to zero at r = 0. However, using a direct solver, one can observe that the resulting discretization errors as

defined by Eq.(15) converge for number of Gauss points NG slightly larger than p+ 1, as shown in Table 1.

Then, using NG = 4 and 6 for the linear and cubic splines respectively, the discretization error as a function

of the number of grid intervals (Fig 1) show the expected quadratic and quartic scaling respectively for the

linear and cubic Splines.

6 The Multigrid Schemes

The two grid procedure described in section (2) can be generalized as follow. Let ν1, ν2 and µ be three

iteration parameters. Given a guess uh and right hand side bh at the finest level, a MG cycle represented

by

uh ←MGh(uh,bh)

will compute a new uh and is defined recursively by the following steps:
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Figure 1: Discretization errors ‖e‖2 obtained by a direct solver versus the number of grid intervals N . A

linear fit yields a quadratic scaling (∼ N−2.0) for the linear Splines and a quartic convergence (∼ N−4.3) for

the cubic Splines.

Number of Gauss points p = 1 p = 3

2 8.319E-04

4 9.277E-04 5.799E-07

6 9.276E-04 5.936E-07

8 9.276E-04 5.936E-07

Table 1: Convergence of the discretization error with respect to the number of Gauss points for the cylindrical

problem with m = 1, s = 10 on a 128 interval grid.
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1. If h is the coarsest mesh size, direct solve Ahuh = bh and return.

2. Else

• Relax uh ν1 times.

• b2h ← R2h
h (bh −Ahuh), u2h ← 0.

• u2h ←MG2h(u2h,b2h) µ times.

• uh ← uh +Ph
2hu

2h.

• Relax uh ν2 times.

The standard V -cycle is obtained for µ = 1 while µ = 2 results in the W -cycle. Usually the number of

pre-smooth and post-smooth sweeps ν1 and ν2 is limited to 1 or 2. In the following a V -cycle will be denoted

by V (ν1, ν2).

Another multigrid algorithm called Full Multigrid or FMG does not require an input guess uh but solves

first the problem on coarser grids and uses one or many MG cycles to obtain the problem solution. It can

be represented by

uh ← FMGh(bh)

and defined recursively by the following steps:

1. If h is the coarsest mesh size, direct solve Ahuh = bh and return.

2. Else

• b2h ← R2h
h (bh).

• u2h ← FMG2h(b2h).

• uh ← Ph
2hu

2h.

• uh ←MGh(uh,bh) ν0 times.

Note that while the MG process is an iterative process (started by setting for example the initial guess uh =

0), the FMG is more like a direct solver with appropriate values of ν1, ν2 and ν0 determined experimentally.

7 Numerical Experiments

The residual norm ‖r‖2 and error ‖e‖2 defined previously are reported after each V -cycle in Table 2 for the

Cartesian model problem and in Table 3 for the cylindrical one . The ratio between successive cycle ‖r‖2
and ‖e‖2 are shown in columns labeled ratio and measure the rate of iteration convergence. The asymptotic

ratio of ‖r‖2 is called the convergence factor.

In all the cases shown, one can note that ‖e‖2 level off quickly to the discretization error obtained by using

the direct solver on the finest grid, while the residual norms ‖r‖2 continue to decrease until the machine zero

is eventually reached. One can also verify that the final discretization errors scale approximately as 82 and

84 respectively for linear and cubic Splines, as N is increased from 128 to 1024.

Most interestingly, the iterative performance depends very weakly on the problem size N , for both the

Cartesian and the cylindrical cases. Moreover, the multigrid seems to be less efficient when linear Splines

are used for the problem discretization. This iterative performance can be further improved by increasing

the iteration parameters ν1, ν2 and µ, as shown in Table 4. One can also observe in the same table that the

Jacobi relaxation is systematically less efficient than Gauss Seidel relaxation.
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Linear B-Splines p = 1

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 6.219E-02 7.164E-04 2.210E-02 7.164E-04

1 2.169E-02 0.35 5.880E-05 0.08 9.699E-03 0.44 3.622E-05 0.05

2 3.801E-03 0.18 7.806E-06 0.13 1.790E-03 0.18 1.965E-06 0.05

3 5.061E-04 0.13 3.666E-06 0.47 2.923E-04 0.16 1.583E-07 0.08

4 6.762E-05 0.13 3.564E-06 0.97 4.055E-05 0.14 6.197E-08 0.39

5 8.902E-06 0.13 3.585E-06 1.01 5.586E-06 0.14 5.655E-08 0.91

6 1.199E-06 0.13 3.589E-06 1.00 7.122E-07 0.13 5.622E-08 0.99

7 1.585E-07 0.13 3.590E-06 1.00 9.815E-08 0.14 5.620E-08 1.00

8 2.089E-08 0.13 3.590E-06 1.00 1.320E-08 0.13 5.619E-08 1.00

9 2.746E-09 0.13 3.590E-06 1.00 1.887E-09 0.14 5.619E-08 1.00

10 3.741E-10 0.14 3.590E-06 1.00 2.533E-10 0.13 5.619E-08 1.00

Cubic B-Splines p = 3

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 6.187E-02 7.164E-04 2.209E-02 7.164E-04

1 1.948E-04 0.00 1.893E-06 0.00 1.685E-05 0.00 4.292E-08 0.00

2 4.316E-06 0.02 3.927E-09 0.00 1.241E-07 0.01 7.156E-11 0.00

3 1.554E-07 0.04 2.374E-09 0.60 4.184E-09 0.03 6.198E-13 0.01

4 5.750E-09 0.04 2.373E-09 1.00 1.560E-10 0.04 5.635E-13 0.91

5 2.153E-10 0.04 2.373E-09 1.00 5.912E-12 0.04 5.635E-13 1.00

6 8.122E-12 0.04 2.373E-09 1.00 2.258E-13 0.04 5.635E-13 1.00

7 3.079E-13 0.04 2.373E-09 1.00 8.777E-15 0.04 5.635E-13 1.00

8 1.173E-14 0.04 2.373E-09 1.00 1.758E-15 0.20 5.635E-13 1.00

9 4.489E-16 0.04 2.373E-09 1.00 1.709E-15 0.97 5.635E-13 1.00

10 9.571E-17 0.21 2.373E-09 1.00 1.761E-15 1.03 5.635E-13 1.00

Table 2: The multigrid V (1, 1) performance with Gauss-Seidel relation for a Cartesian problem with k = 10

and σ = 0, discretized on a grid with N = 128 and 1024 intervals, using linear and cubic B-splines. For both

grid sizes, a total of 6 grid levels were considered.
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Linear B-Splines p = 1

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 1.789E+01 9.354E-02 6.400E+00 9.354E-02

1 3.373E+00 0.19 3.068E-03 0.03 1.826E+00 0.29 3.036E-03 0.03

2 4.895E-01 0.15 8.064E-04 0.26 3.133E-01 0.17 1.624E-04 0.05

3 6.160E-02 0.13 6.704E-04 0.83 4.581E-02 0.15 1.411E-05 0.09

4 8.013E-03 0.13 6.811E-04 1.02 5.959E-03 0.13 1.062E-05 0.75

5 9.871E-04 0.12 6.844E-04 1.00 8.098E-04 0.14 1.069E-05 1.01

6 1.283E-04 0.13 6.847E-04 1.00 1.048E-04 0.13 1.070E-05 1.00

7 1.613E-05 0.13 6.847E-04 1.00 1.504E-05 0.14 1.070E-05 1.00

8 2.097E-06 0.13 6.847E-04 1.00 2.050E-06 0.14 1.070E-05 1.00

9 2.639E-07 0.13 6.847E-04 1.00 3.008E-07 0.15 1.070E-05 1.00

10 3.500E-08 0.13 6.847E-04 1.00 4.074E-08 0.14 1.070E-05 1.00

Cubic B-Splines p = 3

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 1.768E+01 9.354E-02 6.399E+00 9.354E-02

1 4.243E-02 0.00 4.727E-05 0.00 4.975E-03 0.00 6.588E-06 0.00

2 1.378E-03 0.03 1.897E-06 0.04 7.835E-05 0.02 6.578E-09 0.00

3 4.773E-05 0.03 1.814E-06 0.96 2.797E-06 0.04 4.125E-10 0.06

4 2.174E-06 0.05 1.814E-06 1.00 1.041E-07 0.04 4.092E-10 0.99

5 4.816E-07 0.22 1.814E-06 1.00 3.935E-09 0.04 4.092E-10 1.00

6 1.942E-07 0.40 1.814E-06 1.00 1.499E-10 0.04 4.092E-10 1.00

7 8.887E-08 0.46 1.814E-06 1.00 5.757E-12 0.04 4.092E-10 1.00

8 4.449E-08 0.50 1.814E-06 1.00 2.517E-13 0.04 4.092E-10 1.00

9 2.377E-08 0.53 1.814E-06 1.00 1.360E-13 0.54 4.092E-10 1.00

10 1.328E-08 0.56 1.814E-06 1.00 1.384E-13 1.02 4.092E-10 1.00

Table 3: The multigrid V (1, 1) performance with Gauss-Seidel relation for a one-dimensional cylindrical

problem with m = 22 and s = 10, discretized on a grid with N = 128 and 1024 intervals, using linear and

cubic B-splines. For both grid sizes, a total of 6 grid levels were considered.

Cartesian problem Cylindrical problem

N = 128 N = 1024 N = 128 N = 1024

ν1 = 1, ν2 = 1, µ = 1 0.13 0.14 0.13 0.14

ν1 = 1, ν2 = 2, µ = 1 0.08 0.08 (0.10 ) 0.08 0.08 (0.09 )

ν1 = 2, ν2 = 1, µ = 1 0.08 0.08 0.08 0.08

ν1 = 2, ν2 = 2, µ = 1 0.04 0.04 (0.08 ) 0.02 0.03 (0.08 )

ν1 = 1, ν2 = 1, µ = 2 0.12 0.11 0.12 0.11

Table 4: The convergence factor (averaged over the last 5 cycles) for different iteration parameters ν1, ν2
and µ, using the linear Splines for both Cartesian (k = 10, σ = 0) and cylindrical (m = 22, s = 10)

problems. The last entry is usually called a W -cycle while the first four designate a V (ν1, ν2) cycle. Gauss

Seidel relaxation is used except for the results enclosed in parenthesis which are obtained with the Jacobi

(weighted with ω = 2/3) relaxation.
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FMG(1,1) FMG(2,1)

N ‖e‖2 ‖e‖2/‖e‖d ‖e‖2 ‖e‖2/‖e‖d

4 1.011E-01 0.968 1.012E-01 0.969

8 7.781E-02 1.031 7.679E-02 1.018

16 3.332E-02 1.310 2.808E-02 1.104

32 1.516E-03 1.421 1.098E-03 1.030

64 5.168E-05 1.443 3.652E-05 1.019

128 2.012E-06 1.109 1.818E-06 1.002

256 1.125E-07 1.053 1.069E-07 1.001

512 6.819E-09 1.037 6.576E-09 1.000

1024 4.224E-10 1.032 4.093E-10 1.000

2048 2.634E-11 1.031 2.556E-11 1.000

Table 5: The discretization errors ‖e‖2 obtained from a FMG(ν1, ν2) sweep with ν0 = 1 for different grid

sizes N . The columns ‖e‖2/‖e‖d display their ratio with the discretization errors obtained from a direct

solver. The cylindrical problem with m = 22 and s = 10 using cubic Splines is considered here.

The next experiment is shown on Table 5, where two FMG(ν1, ν2) schemes are applied to the m = 22,

s = 10 cylindrical problem with grid sizes up to N = 2048. Note that the problem is solved to the level

of discretization for N ≥ 128 with FMG(2, 1) but not with FMG(1, 1). Solving the same problem with the

V (2, 1) cycle required 3 iterations for all the values of N shown. Since the cost of one FMG(2,1) is ∼ 2 the

cost of one V (2, 1) (see Appendix A), it appears that FMG is more efficient for N ≥ 128.

Finally, in all the cases shown here, the equality (10) is verified numerically, except for the cylindrical case

with m 6= 0. This is expected since as noted earlier, the matrix elements Ai1 and A1i diverge unless m = 0

in the cylindrical problem.

8 Periodic Case

8.1 Transfer operators

For periodic problems, we use periodic Splines [2] which satisfy the periodic boundary condition Λh
i+N (x) =

Λh
i (x−Nh). As a result, both the expansion coefficients and the right hand sides are periodic with periodicity

N (uh
i+N = uh

i , b
h
i+N = bhi ) and he rank of all matrices should be N instead of N + p as in the non-periodic

case.

The prolongation matrix Ph
2h as given by (9) are computed numerically and the results for N = 8 are given

below for linear, quadratic and cubic Splines.

• Linear Splines

Ph
2h =

















1 0 0 0

1/2 1/2 0 0

0 1 0 0

0 1/2 1/2 0

0 0 1 0

0 0 1/2 1/2

0 0 0 1

1/2 0 0 1/2

















(20)
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• Quadratic Splines

Ph
2h =

















3/4 1/4 0 0

1/4 3/4 0 0

0 3/4 1/4 0

0 1/4 3/4 0

0 0 3/4 1/4

0 0 1/4 3/4

1/4 0 0 3/4

3/4 0 0 1/4

















(21)

• Cubic Splines

Ph
2h =

















1/2 1/2 0 0

1/8 3/4 1/8 0

0 1/2 1/2 0

0 1/8 3/4 1/8

0 0 1/2 1/2

1/8 0 1/8 3/4

1/2 0 0 1/2

3/4 1/8 0 1/8

















(22)

The restriction matrix is simply R2h
h = (Ph

2h)
T . Generalization for any other number of intervals N should

be straightforward.

8.2 Numerical Experiments

In order to test the grid transfer operators obtained above, the same second-order problem (16) but with the

periodic boundary condition u(x + 1) = u(x) is considered. It should be noted that in that case, if σ = 0,

the problem is singular since the solution is not unique! But we have observed that this problem can be

avoided for a slightly non zero σ,

With σ = 0.01 and k = 10 and using linear and cubic Splines, we recover the same multigrid iterative

performances shown in Table 2 obtained previously for non-periodic Dirichlet boundary conditions. Table 6

also shows similar iterative efficiencies for quadratic non-periodic and periodic problems.

The identity (10) is numerically verified in all the cases considered.

9 Conclusion

Using the variational principle, we have derived the expressions of the grid transfer matrices for Finite

Elements using Splines of any order. It is found that:

• The grid transfer matrices do not depend of the geometries characterized by the Jacobian as defined

in dV = xαdx.

• The standard grid transfer operator used for first order finite difference (FD) discretization for Cartesian

geometry is recovered when linear Spline finite elements (FE) are used.

• Applying these transfer matrices, we have solved Cartesian, cylindrical as well as periodic one di-

mensional problems, and obtained essentially the same multigrid iterative performances as found for

standard first order FD Cartesian problems.

• No performance degradation is observed when the order of Splines FE is increased from 1 to 3, or when

the cylindrical geometry is considered.
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Cartesian problem with quadratic splines

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 6.203E-02 7.164E-04 2.209E-02 7.164E-04

1 8.114E-04 0.01 6.375E-06 0.01 1.003E-04 0.00 4.509E-07 0.00

2 1.891E-05 0.02 6.079E-08 0.01 1.769E-06 0.02 8.061E-10 0.00

3 1.103E-06 0.06 5.220E-08 0.86 7.018E-08 0.04 9.970E-11 0.12

4 8.148E-08 0.07 5.220E-08 1.00 5.620E-09 0.08 9.958E-11 1.00

5 6.368E-09 0.08 5.220E-08 1.00 4.772E-10 0.08 9.958E-11 1.00

6 4.969E-10 0.08 5.220E-08 1.00 4.101E-11 0.09 9.958E-11 1.00

7 3.874E-11 0.08 5.220E-08 1.00 3.548E-12 0.09 9.958E-11 1.00

8 3.081E-12 0.08 5.220E-08 1.00 3.081E-13 0.09 9.958E-11 1.00

9 2.489E-13 0.08 5.220E-08 1.00 2.690E-14 0.09 9.958E-11 1.00

10 1.986E-14 0.08 5.220E-08 1.00 3.212E-15 0.12 9.958E-11 1.00

Periodic problem with quadratic splines

N = 128 N = 1024

V -cycle ‖r‖2 ratio ‖e‖2 ratio ‖r‖2 ratio ‖e‖2 ratio

0 6.203E-02 7.164E-04 2.209E-02 7.164E-04

1 1.285E-03 0.02 1.294E-05 0.02 3.116E-04 0.01 5.862E-06 0.01

2 7.878E-05 0.06 6.569E-07 0.05 2.893E-05 0.09 1.626E-07 0.03

3 6.573E-06 0.08 6.511E-08 0.10 2.691E-06 0.09 5.631E-09 0.03

4 5.681E-07 0.09 5.224E-08 0.80 2.385E-07 0.09 2.400E-10 0.04

5 4.890E-08 0.09 5.219E-08 1.00 2.097E-08 0.09 9.997E-11 0.42

6 4.198E-09 0.09 5.219E-08 1.00 1.828E-09 0.09 9.958E-11 1.00

7 3.607E-10 0.09 5.219E-08 1.00 1.584E-10 0.09 9.958E-11 1.00

8 3.103E-11 0.09 5.219E-08 1.00 1.370E-11 0.09 9.958E-11 1.00

9 2.674E-12 0.09 5.219E-08 1.00 1.184E-12 0.09 9.958E-11 1.00

10 2.307E-13 0.09 5.219E-08 1.00 1.025E-13 0.09 9.958E-11 1.00

Table 6: The multigrid V (1, 1) performance with Gauss-Seidel relation for Cartesian problem (k = 10,

σ = 0) and periodic problem (k = 10, σ = 0.01), discretized on a grid with N = 128 and 1024 intervals,

using quadratic B-splines. For both grid sizes, a total of 6 grid levels were considered.
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For two dimensional problems, notice that for both Cartesian (dV = dxdy) and standard curvilinear geome-

tries (dV = rαdrdθ), the Jacobian is separable. Using this property, one can show that the two dimensional

grid transfer consists of simply applying successively one dimensional grid transfer on each of the x and y

(or r and θ) grids. With the solution uh = [uh
ij ] and right hand side bh = [bhij ] defined by

u(x, y) =
∑

ij

uh
ijΛ

h
i (x)Λ

h
j (y), bhij =

∫

dxΛh
i (x)

∫

dyΛh
j (y)f(x, y), (23)

the two dimension grid transfers can be expressed as (see Appendix B)

uh = xP
h
2h u2h

(

yP
h
2h

)T
,

b2h = xR
2h
h bh

(

yR
2h
h

)T
.

(24)

For more general curvilinear coordinates such as found in tokamak magnetic coordinates defined by dV =

J(s, θ)dsdθ, we will assume that the grid transfer operators derived above are still applicable. The validity

of this assumption will be the object of the next task.

A Multigrid Cost Estimation

Assuming that the coarsest grid is fixed to 2, the total number of grid levels L is given by N/2L−1 = 2

or L = log2(N), where N is the number of intervals in the finest grid. Since both relaxation and intergrid

transfer are proportional to the number of problem unknowns, the cost of the V -cycle can be estimated as:

MG(N) = c
[
(N + p) + (N/2 + p) + . . .+ (N/2L−2 + p)

]

= c [2N − 4 + (L− 1)p] ,
(25)

where p is the order of Splines used for the discretization. The FMG can then be deduced, assuming ν0 = 1

as

FMG(N) = MG(N) +MG(N/2) + . . .+MG(N/2L−2)

= c [4N − 8 + (L− 1)(pL/2− 4)] .
(26)

As expected a single FMG cycle (with ν0 = 1) costs about two V -cycles.

B Two dimensional Grid Transfer

On the fine and the coarse grids, the problem solution u(x, y) can be written as:

u(x, y) =
∑

i′j′

uh
i′j′Λ

h
i′(x)Λ

h
j′(y) =

∑

i′j′

u2h
i′j′Λ

2h
i′ (x)Λ

2h
j′ (y).

Projecting these two expansions on the two dimensional basis functions Λh
i (x)Λ

h
j (y) yields

∑

i′j′

uh
i′j′

∫

dxΛh
i (x)Λ

h
i′(x)

︸ ︷︷ ︸

Mh,h

ii′

∫

dyΛh
j (x)Λ

h
j′(y)

︸ ︷︷ ︸

Nh,h

jj′

=
∑

i′j′

u2h
i′j′

∫

dxΛh
i (x)Λ

2h
i′ (x)

︸ ︷︷ ︸

Mh,2h

ii′

∫

dyΛh
j (x)Λ

2h
j′ (y)

︸ ︷︷ ︸

Nh,2h

jj′

=⇒ Mh,h uh
(
Nh,h

)T
= Mh,2hu2h

(
Nh,2h

)T

=⇒ uh =
(
Mh,h

)−1
Mh,2h u2h

[(
Nh,h

)−1
Nh,2h

]T

.
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The right hand side can be written on the fine and coarse grids as

bhij =

∫

dxΛh
i (x)

∫

dyΛh
j (y) f(x, y) =

∑

i′j′

Mh,h
ii′ fh

i′j′N
h,h
jj′ =⇒ bh = Mh,h fh

(
Nh,h

)T
,

b2hij =

∫

dxΛ2h
i (x)

∫

dyΛ2h
j (y) f(x, y) =

∑

i′j′

M2h,h
ii′ fh

i′j′N
2h,h
jj′ =⇒ b2h = M2h,h fh

(
N2h,h

)T
,

where the expansion of f(x, y) on the fine mesh has been used. Elimination of fh then yields

b2h = M2h,h
(
Mh,h

)−1
bh

[

N2h,h
(
Nh,h

)−1
]T

.
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