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A multigrid formulation for finite elements is derived, using variational principles. More specifically the grid transfer

operators will be derived and tested in 2D Cartesian and cylindrical geometry for arbitrary order B-Splines.
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1 The Model Problems

1.1 Cartesian Geometry

The following second-order boundary value problem is considered

−

[
∂2

∂x2
+

∂2

∂y2

]

u(x, y) = f(x, y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0.

(1)

By choosing

f(x, y) = sin(πkxx+ πkyy),

where kx and ky are integers, the solution of the BVP is simply

u(x, y) =
sin(πkxx+ πkyy)

π2(k2x + k2y)
.

Using a weak formulation on Eq.(1) and a grid of Nx × Ny intervals, one obtains the following discretized

linear system
Nx+p
∑

i′=1

Ny+p
∑

j′=1

Aiji′j′ui′j′ = bij , i = 1, . . . , Nx + p, j = 1, . . . , Ny + p, (2)
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where the unknowns uij are the Spline (of order p) expansion coefficients of the solution

u(x, y) =

Nx+p
∑

i=1

Ny+p
∑

j=1

uijΛi(x)Λj(y), (3)

and the matrix A and right hand side b are determined from

Aiji′j′ =

∫ 1

0

∫ 1

0

dxdy
[
Λ′

i′(x)Λj′(y)Λ
′

i(x)Λj(y) + Λi′(x)Λ
′

j′(y)Λi(x)Λ
′

j(y)
]
, (4)

bij =

∫ 1

0

∫ 1

0

dxdyΛi(x)Λj(y)f(x, y). (5)

Note that using a Gauss quadrature with ⌈(2p + 1)/2⌉ points per interval to calculate the matrix A would

yield an exact integration.

1.2 Cylindrical Geometry

The following second-order boundary value problem is considered:

−

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

]

u(r, θ) = f(r, θ) 0 ≤ r ≤ 1, 0 ≤ θ < 2π

u(1, θ) = 0,

(6)

By choosing

f(r, θ) = j2msJm(jmsr) cos(mθ),

where m is an integer and jms, the sth zero of Jm, the solution of this BVP is

u(r, θ) = Jm(jmsr) cos(mθ).

Using a weak formulation on Eq.(6)and a grid of Nr × Nθ intervals, one obtains the following discretized

linear system
Nr+p
∑

i′=1

Nθ∑

j′=1

Aiji′j′ui′j′ = bij , i = 1, . . . , Nr + p, j = 1, . . . , Nθ, (7)

where the unknowns uij are the Spline (of order p) expansion coefficients of the solution

u(r, θ) =

Nr+p
∑

i=1

Nθ∑

j=1

uijΛi(r)Λj(θ), (8)

and the matrix A and right hand side b are determined from

Aiji′j′ =

∫ 1

0

∫ 2π

0

rdrdθ

[

Λ′

i′(r)Λj′(θ)Λ
′

i(r)Λj(θ) +
1

r2
Λi′(r)Λ

′

j′(θ)Λi(r)Λ
′

j(θ)

]

, (9)

bij =

∫ 1

0

∫ 2π

0

rdrdθΛi(r)Λj(θ)f(r, θ). (10)

Note that A has an 1/r singularity in the integrand. For m 6= 0, this should not be problematic since the

converged solution behaves as ∼ rm near r = 0. The case m = 0 will be investigated numerically latter in

this report, together withe the m 6= 0 case.

2 Restriction Operator

In the following, let us use the superscripts h and 2h to denote quantities defined respectively on a fine

(Nx ×Ny or Nr ×Nθ) and a coarser (Nx/2×Ny/2 or Nr/2×Nθ/2) grid.

The two grid transfers required in the standard multigrid [1, 2] are:
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1. the restriction of the right hand side: bh −→ b2h and

2. the prolongation of the solution: u2h −→ uh.

Noting that the basis functions Λ2h
i (x), which are piecewise Cp−1 polynomials with breaks on the coarse

grid points x2h
k = (2h)k can be also considered as piecewise Cp−1 polynomials with breaks on the fine grid

xh
k = kh, they can be expressed uniquely as a linear combination of the fine grid basis functions:

Λ2h
i (x) =

N+p
∑

i′=1

cii′Λ
h
i′(x), i = 1, . . . , N/2 + p. (11)

The (rectangular) matrix cii′ can be identified as the one-dimensional restriction R since

b2hi =

∫ 1

0

dxf(x)Λ2h
i (x) =

N+p
∑

i′=1

cii′ b
h
i′ =

N+p
∑

i′=1

Rii′ b
h
i′ .

It can be computed by simply projecting Eq.(11) on the fine grid basis function Λh
j (x) [1]:

N+p
∑

i′=1

Rii′

∫ 1

0

dxΛh
i′(x)Λ

h
j (x)

︸ ︷︷ ︸

Mh
i′j

=

∫ 1

0

dxΛ2h
i (x)Λh

j (x)

︸ ︷︷ ︸

M2h,h

i′j

=⇒ R = M2h,h · (Mh)−1. (12)

It should be stressed that the representation for Λ2h
i (x) in Eq.(11) is unique. This is checked by verifying

that the same matrix Rii′ is obtained using for example the collocation methods. One such method, which

is used for this check is detailed in Appendix A. The calculated grid transfer matrices for linear, quadratic

and cubic periodic and non-periodic Splines are given in [1].

Denoting the restriction on x and y respectively by Rx and Ry, the two-dimensional restriction of bhij is

defined as

b2hij =

∫ 1

0

∫ 1

0

dxdyf(x, y)Λ2h
i (x)Λ2h

j (y) =

N+p
∑

i′=1

N+p
∑

j′=1

Rx
ii′R

y
jj′b

h
i′j′ ,

and thus

b2h = Rx · bh · (Ry)T . (13)

3 Prolongation Operator

Using Eq.(11) (with cii′ = Rii′), the solution at the coarse grid can be expressed as

u2h(x) =

N/2+p
∑

i=1

u2h
i Λ2h

i (x) =

N+p
∑

i′=1





N/2+p
∑

i=1

Rii′u
2h
i



Λh
i′(x) =

N+p
∑

i′=1





N/2+p
∑

i=1

(R)Ti′iu
2h
i





︸ ︷︷ ︸

ũh
i′

Λh
i′(x),

from which one obvious choice for the prolongation operator would be

P = RT = (Mh)−1 ·Mh,2h. (14)

Generalization to a two-dimensional prolongation is obtained as follows, where summation over repeated

indices is assumed:

u2h(x, y) = u2h
ij Λ

2h
i (x)Λ2h

j (y) =
[

Rx
ii′u

2h
ij R

y
jj′

]

Λh
i′(x)Λ

h
j′(y)



4. Numerical Experiments 4

which leads to the prolonged solution ũh given by

ũh = Px · u2h · (Py)T . (15)

It should be noted here that, while the restricted right hand side b2h as defined in Eq.(13) is exactly identical

to the assembled right hand side, the prolonged solution ũh defined in Eq.(15) is just a representation of

u2h(x, y) on the fine mesh and not the solution uh(x, y) which can only be obtained by solving the problem

on the fine mesh!

4 Numerical Experiments

The multigrid performance can be characterized by looking at the convergence of the residual Euclidean

norm for the linear system Au = b:

‖r‖2 = ‖b−Au‖2. (16)

When the exact solution u(x, y) is known, the discretization error can defined as

‖e‖2 =

√
√
√
√
√

∫

dV




∑

ij

uijΛij(x, y)− u(x, y)





2

(17)

and computed using a Gauss quadrature. Note that for Splines of order p, ‖e(x, y)‖2(h) converges to zero

as O(hp+1).

4.1 Cartesian Geometry

The multigrid performances for varying problem sizes are displayed in Fig.(1) for linear Splines and Fig.(2)

for cubic Splines. They show that the number of iterations required for convergence (abount 3 for both

linear and cubic Splines) is insensitive to the problem sizes. Compared to direct methods, the multigrid

should scale much better for large problem sizes, as indicated in Table 1. For this model problem, using

cubic Splines seems to converge slightly faster than linear Splines!

Linear Splines Cubic Splines

N V (2, 1) Direct V (2, 1) Direct

16 8.844E-04 2.051E-03 2.653E-03 3.970E-03

32 1.661E-03 5.345E-03 4.983E-03 1.540E-02

64 5.766E-03 2.054E-02 1.730E-02 7.492E-02

128 2.347E-02 3.288E-01 7.042E-02 1.060E+00

Table 1: Times (in seconds) used by a the direct sparse solver MUMPS-4.10.0 for different problem sizes

versus the times used by three multigrid V (2, 1) cycles. The Intel Fortran-13.0 compiler is used on an Intel

i7 platform.

The effects of the relaxation parameters ν1, ν2 on the multigrid performnace (Fig.(3)) indicates that only a

few relaxations are sufficient to achieve a good multigrid performance. Further analysis of the computational

cost is required however to determine the optimal ν1, ν2.

Finally, the effects of the number of grid levels are analyzed in Fig.(4). In addition to the computational

cost (see Table 2), the memory required for the direct solver at the coarsest grid level should be taken into

account for the choice of the optimal number of grid levels, especially for very large problems.



4. Numerical Experiments 5

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

Iterations

N
or

m
 o

f r
es

id
ua

l

Linear Splines, V(2,1), relax=gs, KX=3, KY=3

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

Iterations

N
or

m
 o

f e
rr

or 16 X 16

32 X 32

64 X 64

128 X 128

Figure 1: Performance of the multigrid V (2, 1) scheme using a Gauss-Seidel relaxation and linear Splines

for different problem sizes. The size of the coarsest grid is 2× 2.
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Figure 2: Performance of the multigrid V (2, 1) scheme using a Gauss-Seidel relaxation and cubic Splines for

different problem sizes. The size of the coarsest grid is 2× 2.
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Figure 3: Effect of the number of the relaxation sweeps ν1, ν2 on the performance of the multigrid V (ν1, ν2)-

cycle for Cubic Splines. The finest grid has 128× 128 intervals.
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Figure 4: Effect of the number grid levels on the performance of the multigrid V (2, 1)-cycle for Cubic Splines.

The finest grid has 128× 128 intervals.
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Number of levels V (1, 0) V (1, 1) V (2, 1)

2 3.386E-02 3.881E-02 4.031E-02

3 2.923E-02 3.398E-02 3.605E-02

4 2.880E-02 3.275E-02 3.595E-02

7 2.912E-02 3.236E-02 3.566E-02

Table 2: Effects of the times in seconds used per V -cyclefor different number of grid levels and relaxation

paramters for a 128× 128 problem. The Intel Fortran-13.0 compiler is used on an Intel i7 platform.

4.2 Cylindrical Geometry
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A Grid transfer matrix by collocation

Let first consider the periodic case. Denoting N as the number of intervals of the fine grid, the periodic

Spline basis functions on the coarse grid Λ2h
i can be expressed as linear combinations of the fine grid Spline

basis functions as:

Λ2h
i (x) =

N∑

i′=1

Rii′Λ
h
i′(x), i = 1, . . . , N/2. (18)

For any given i, the coefficients Rii′ can be calculated by expressing the relation above on exactly N points

on the x-grid. For odd Spline order p, these collocation (or interpolating) points can be chosen as the

break points of the fine grid xh
k , k = 0, . . . , N − 1. For even values of p, the collocation points should be

xh
k+1/2 = (xh

k+xh
k+1

)/2 in order to obtain a non-singular linear system of equations [3]. The resulting system

of equations to solve for Rii′ are given below:

p odd :

N∑

i′=1

Λh
i′(x

h
k)Rii′ = Λ2h

i (xh
k), k = 0, . . . , N − 1, i = 1, . . . , N/2,

p even :

N∑

i′=1

Λh
i′(x

h
k+1/2)Rii′ = Λ2h

i (xh
k+1/2), k = 0, . . . , N − 1, i = 1, . . . , N/2.

(19)

For non-periodic Splines, there are N + p and N/2 + p basis functions respectively on the fine and coarse

grid:

Λ2h
i (x) =

N+p
∑

i′=1

Rii′Λ
h
i′(x), i = 1, . . . , N/2 + p. (20)

This implies that for any given Λ2h
i , N + p conditions are required to determined the N + p terms of row

i of the matrix Rii′ . For odd p, N + 1 collocation points xk, k = 0, . . . , N can be used with the missing

p− 1 equations obtained by expressing all the (p− 1)/2 derivatives of Λ2h
i (x) at the end points x0 and xN :

dα

dxα
Λ2h
i (x) =

N+p
∑

i′=1

Rii′
dα

dxα
Λh
i′(x), α = 1, . . . ,

p− 1

2
(p odd). (21)

For even p, in addition to the N relations obtained with the collocation points xk+1/2 (as in the periodic

case), the missing p conditions can be obtained by expressing Λ2h
i and its derivatives up to p/2 − 1 at the

end points x0 and xN :

dα

dxα
Λ2h
i (x) =

N+p
∑

i′=1

Rii′
dα

dxα
Λh
i′(x), α = 0, . . . ,

p

2
− 1 (p even). (22)
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