Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91139469
micpsolverold.inl
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 07:35
Size
20 KB
Mime Type
text/x-c++
Expires
Sun, Nov 10, 07:35 (2 d)
Engine
blob
Format
Raw Data
Handle
22203929
Attached To
rSPECMICP SpecMiCP / ReactMiCP
micpsolverold.inl
View Options
/*-------------------------------------------------------
- Module : micpsolver
- File : micpsolver.inl
- Author : Fabien Georget
Copyright (c) 2014, Fabien Georget, Princeton University
---------------------------------------------------------*/
#include "micpsolverold.hpp" // for syntaxic coloration...
#include "estimate_cond_number.hpp"
#include "utils/log.hpp"
#include <iostream>
//! \file micpsolver.inl implementation of the MiCP solver
namespace specmicp {
namespace micpsolver {
// Main algorithm
// ##############
template <class Program, NCPfunction ncp_t>
MiCPSolverReturnCode MiCPSolverOLD<Program, ncp_t>::solve(Eigen::VectorXd &x)
{
int cnt = 0;
if (get_options().use_crashing) crashing(x);
else setup_residuals(x);
MiCPSolverReturnCode retcode = MiCPSolverReturnCode::NotConvergedYet;
Eigen::VectorXd update(get_neq());
while (retcode == MiCPSolverReturnCode::NotConvergedYet)
{
DEBUG << "Iteration : " << cnt;
SPAM << "Solution : \n" << x;
m_program->hook_start_iteration(x, m_phi_residuals.norm());
setup_residuals(x);
get_perf().current_residual = m_phi_residuals.norm();
SPAM << "Residuals : \n ----- \n" << m_phi_residuals << "\n ----- \n";
retcode = check_convergence(cnt, update, x);
get_perf().return_code = retcode;
if (retcode != MiCPSolverReturnCode::NotConvergedYet) break;
++cnt;
m_max_taken = false;
setup_jacobian(x);
if(get_options().use_scaling)
search_direction_calculation(update);
else
search_direction_calculation_no_scaling(update);
reformulate_result<ncp_t>(get_neq(), get_neq_free(),
x, m_residuals,
m_grad_phi, update);
int termcode = linesearch(update, x);
get_perf().current_update = update.norm();
DEBUG << "Return LineSearch : " << termcode;
projection(x);
get_perf().nb_iterations = cnt;
}
return retcode;
}
template <class Program, NCPfunction ncp_t>
MiCPSolverReturnCode MiCPSolverOLD<Program, ncp_t>::check_convergence(int nb_iterations,
Eigen::VectorXd& update,
Eigen::VectorXd& solution)
{
MiCPSolverReturnCode termcode = MiCPSolverReturnCode::NotConvergedYet;
const double norm_residuals = m_phi_residuals.lpNorm<Eigen::Infinity>();
if (norm_residuals < get_options().fvectol)
{
termcode = MiCPSolverReturnCode::ResidualMinimized;
}
else if (nb_iterations >0 and norm_update<Eigen::Infinity>(update, solution) < get_options().steptol)
{
if (norm_residuals > get_options().threshold_stationary_point)
{
ERROR << "Stationary point detected !";
termcode = MiCPSolverReturnCode::StationaryPoint;
}
WARNING << "Error is minimized - may indicate a stationnary point";
termcode = MiCPSolverReturnCode::ErrorMinimized;
}
else if (nb_iterations > get_options().max_iter)
{
ERROR << "Maximum number of iteration reached (" << get_options().max_iter << ")";
termcode = MiCPSolverReturnCode::MaxIterations;
}
else if (m_max_taken)
{
++m_consec_max;
if (m_consec_max == get_options().maxiter_maxstep) {
ERROR << "Divergence detected - Maximum step length taken two many times";
termcode = MiCPSolverReturnCode::MaxStepTakenTooManyTimes;
}
}
else
{
m_consec_max = 0;
}
return termcode;
}
template <class Program, NCPfunction ncp_t>
MiCPSolverReturnCode MiCPSolverOLD<Program, ncp_t>::search_direction_calculation(Eigen::VectorXd& update)
{
Eigen::VectorXd rscaler(Eigen::VectorXd::Ones(m_jacobian.cols()));
Eigen::VectorXd cscaler(Eigen::VectorXd::Ones(m_jacobian.rows()));
scaling_jacobian(m_jacobian, m_phi_residuals, rscaler, cscaler);
m_jacobian = rscaler.asDiagonal() * (m_jacobian) * cscaler.asDiagonal();
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> solver;
m_gradient_step_taken = false;
int m;
for (m=0; m<get_options().max_factorization_step; ++m)
{
const double lambda = get_options().factor_gradient_search_direction;
solver.compute(m_jacobian);
get_perf().nb_factorization += 1;
if (solver.info() != Eigen::Success or not solver.isInvertible())
{
DEBUG << "Solver.info : " << solver.info() << " - is invertible : " << solver.isInvertible();
ERROR << "System cannot be solved, we try a perturbation";
m_gradient_step_taken = true;
m_jacobian += rscaler.asDiagonal() * (
lambda*Eigen::MatrixXd::Identity(m_jacobian.rows(),m_jacobian.cols())) * cscaler.asDiagonal();
continue;
}
double cond = estimate_condition_number(solver.matrixR().triangularView<Eigen::Upper>());
if (cond > get_options().condition_limit)
{
m_gradient_step_taken = true;
m_jacobian += rscaler.asDiagonal() * (
lambda*Eigen::MatrixXd::Identity(m_jacobian.rows(),m_jacobian.cols())) * cscaler.asDiagonal();
continue;
}
update = solver.solve(-rscaler.cwiseProduct(m_phi_residuals + m*lambda*m_grad_phi));
update = cscaler.cwiseProduct(update);
double descent_cond = m_grad_phi.dot(update);
double norm_grad = m_grad_phi.norm();
double norm_update = update.norm();
if ( (descent_cond <= -get_options().factor_descent_condition*std::min(std::pow(norm_update,2),std::pow(norm_update,3)))
and (descent_cond <= -get_options().factor_descent_condition*std::min(std::pow(norm_grad,2),std::pow(norm_grad,3)))
)
break; // we have a solution !
m_gradient_step_taken = true;
m_jacobian += rscaler.asDiagonal() * ( lambda*
Eigen::MatrixXd::Identity(m_jacobian.rows(),m_jacobian.cols())
) * cscaler.asDiagonal();
}
DEBUG << "Gradient step : m = " << m;
if (m == get_options().max_factorization_step) {
INFO << "Full gradient step taken !";
update = -m_grad_phi;
}
return MiCPSolverReturnCode::NotConvergedYet;
}
template <class Program, NCPfunction ncp_t>
MiCPSolverReturnCode MiCPSolverOLD<Program, ncp_t>::search_direction_calculation_no_scaling(Eigen::VectorXd& update)
{
DEBUG << "Solving linear system";
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> solver;
m_gradient_step_taken = false;
int m;
for (m=0; m<get_options().max_factorization_step; ++m)
{
const double lambda = get_options().factor_gradient_search_direction;
solver.compute(m_jacobian);
get_perf().nb_factorization += 1;
if (solver.info() != Eigen::Success or not solver.isInvertible()) continue;
double cond = estimate_condition_number(solver.matrixR().triangularView<Eigen::Upper>());
if (cond > get_options().condition_limit)
{
continue;
}
update = solver.solve(-(m_phi_residuals + m*lambda*m_grad_phi));
double descent_cond = m_grad_phi.dot(update);
double norm_grad = m_grad_phi.norm();
double norm_update = update.norm();
if ( (descent_cond <= -get_options().factor_descent_condition*std::min(std::pow(norm_update,2),std::pow(norm_update,3)))
and (descent_cond <= -get_options().factor_descent_condition*std::min(std::pow(norm_grad,2),std::pow(norm_grad,3)))
)
break; // we have a solution !
m_gradient_step_taken = true;
m_jacobian += lambda*Eigen::MatrixXd::Identity(m_jacobian.rows(),m_jacobian.cols());
}
DEBUG << "Gradient step : m = " << m;
if (m ==4) {
INFO << "Full gradient step taken !";
update = -m_grad_phi;
}
return MiCPSolverReturnCode::NotConvergedYet;
}
template <class Program, NCPfunction ncp_t>
void MiCPSolverOLD<Program, ncp_t>::crashing(Eigen::VectorXd &x)
{
DEBUG << "Crashing ";
const double beta = 0.5;
const double sigma = 1e-5;
int cnt = 0;
while (cnt < 10)
{
setup_residuals(x);
setup_jacobian(x);
m_grad_phi = m_jacobian.transpose()*m_phi_residuals;
Eigen::VectorXd xp(get_neq());
int l=0;
const int maxl = 10;
while (l<maxl)
{
xp = x - std::pow(beta, l)*m_grad_phi;
for (int i=get_neq_free(); i<get_neq(); ++i)
{
if (xp(i) < 0) xp(i) = 0;
}
Eigen::VectorXd new_res(get_neq());
compute_residuals(x, new_res);
reformulate_residuals_inplace(x, new_res);
double test = 0.5*(new_res.squaredNorm() - m_phi_residuals.squaredNorm()) + sigma*m_grad_phi.dot(x - xp);
if (test <= 0) break;
++l;
}
if (l == maxl) break;
x = xp;
++cnt;
}
get_perf().nb_crashing_iterations = cnt;
DEBUG << "Crashing iterations : " << cnt;
m_max_merits.reserve(4);
SPAM << "Solution after crashing \n ------ \n " << x << "\n ----- \n";
}
// Others
// ######
template <class Program, NCPfunction ncp_t>
void MiCPSolverOLD<Program, ncp_t>::reformulate_residuals(const Eigen::VectorXd& x,
const Eigen::VectorXd& r,
Eigen::VectorXd& r_phi)
{
r_phi.resizeLike(r);
r_phi.block(0, 0, get_neq_free(), 1) = r.block(0, 0, get_neq_free(), 1);
for (int i = get_neq_free(); i<get_neq(); ++i)
{
r_phi(i) = phi_lower_bounded(x(i), r(i), 0);
}
}
template <class Program, NCPfunction ncp_t>
void MiCPSolverOLD<Program, ncp_t>::reformulate_residuals_inplace(const Eigen::VectorXd& x,
Eigen::VectorXd& r)
{
for (int i = get_neq_free(); i<get_neq(); ++i)
{
r(i) = phi_lower_bounded(x(i), r(i), 0);
}
}
// ref : Munson et al. (2001)
template <class Program, NCPfunction ncp_t>
void MiCPSolverOLD<Program, ncp_t>:: scaling_jacobian(
const Eigen::MatrixXd& jacobian,
const Eigen::VectorXd& r_phi,
Eigen::VectorXd& rscaler,
Eigen::VectorXd& cscaler)
{
for (int i=0; i<jacobian.cols(); ++i)
{
const double sumhsq = jacobian.row(i).array().square().sum();
double s = std::sqrt(r_phi(i)*r_phi(i) + sumhsq);
rscaler(i) = 1.0/std::max(s, 1e-10);
}
for (int i=0; i<jacobian.cols(); ++i)
{
const double sumhsq = (rscaler.asDiagonal()*jacobian).col(i).array().square().sum();
double s = std::sqrt(sumhsq);
cscaler(i) = 1.0/std::max(s, 1e-10);
}
}
template <class Program, NCPfunction ncp_t>
int MiCPSolverOLD<Program, ncp_t>::linesearch(Eigen::VectorXd& p, Eigen::VectorXd& x)
{
// Reference Algo A6.3.1 : Dennis and Schnabel (1983)
DEBUG << "Linesearch";
Eigen::VectorXd xp(get_neq());
Eigen::VectorXd new_res(get_neq());
double fcp;
m_max_taken = false;
int retcode = 2;
const double alpha = 1e-6;
double newtlen = is_step_too_long(p);
double init_slope = m_grad_phi.dot(p);
double rellength = std::abs(p(0));
for (int i=1; i<get_neq(); ++i)
{
rellength = std::max(rellength, std::abs(p(i)));
}
double minlambda = get_options().steptol / rellength;
double lambda = m_program->max_lambda(x, p);
double lambda_prev = lambda;
// non monotone linesearch
// -----------------------
double merit_value = 0.5*m_phi_residuals.squaredNorm();
// new residual
xp = x + lambda*p;
compute_residuals(xp, new_res);
reformulate_residuals_inplace(xp, new_res);
fcp = 0.5*new_res.squaredNorm();
// Skip linesearch if enough progress is done
if (fcp < get_options().coeff_accept_newton_step *merit_value)
{
if (m_max_merits.size() > 0) m_max_merits[m_max_merits.size()-1] = merit_value;
else m_max_merits.push_back(merit_value);
x = xp;
return 0;
}
//std::cout << "Merit value : " << merit_value << std::endl;
double mmax = merit_value;
if (m_max_merits.size() > 0)
{
mmax = m_max_merits[m_max_merits.size()-1];
}
if (m_max_merits.size() < 4)
{
m_max_merits.push_back(merit_value);
if (merit_value < mmax) merit_value = (3*merit_value + mmax)/4;
}
else if (merit_value < mmax)
{
m_max_merits[3] = merit_value;
merit_value = mmax;
}
if (m_gradient_step_taken)
{
merit_value *= 100;
}
//std::cout << "Merit value used : " << merit_value << std::endl;
double fc = merit_value;
double fcp_prev;
int cnt = 0;
do
{
fcp = 0.5*new_res.squaredNorm();
//std::cout << "fcp : " << fcp << "\n fc+alin : " << fc+alpha*lambda*init_slope << " # fc : " << fc << std::endl;
if (fcp <= fc - std::min(-alpha*lambda*init_slope,(1-alpha)*fc)) //pg760 Fachinei2003
{
retcode = 0;
if (lambda ==1 and (newtlen > 0.99 * get_options().maxstep)) {
m_max_taken = true;
}
break;
}
else if (lambda < minlambda)
{
retcode = 1;
break;
}
else
{
double lambdatmp;
if (cnt == 0) { // only a quadratic at the first
lambdatmp = - init_slope / (2*(fcp - fc -init_slope));
}
else
{
const double factor = 1 /(lambda - lambda_prev);
const double x1 = fcp - fc - lambda*init_slope;
const double x2 = fcp_prev - fc - lambda_prev*init_slope;
const double a = factor * ( x1/(lambda*lambda) - x2/(lambda_prev*lambda_prev));
const double b = factor * ( -x1*lambda_prev/(lambda*lambda) + x2*lambda/(lambda_prev*lambda_prev));
if (a == 0)
{ // cubic interpolation is in fact a quadratic interpolation
lambdatmp = - init_slope/(2*b);
}
else
{
const double disc = b*b-3*a*init_slope;
lambdatmp = (-b+std::sqrt(disc))/(3*a);
}
if (lambdatmp > 0.5*lambda ) lambdatmp = 0.5*lambda;
}
lambda_prev = lambda;
fcp_prev = fcp;
if (lambdatmp < 0.1*lambda) {
lambda = 0.1 * lambda;
} else {
lambda = lambdatmp;
}
}
xp = x + lambda*p;
compute_residuals(xp, new_res);
reformulate_residuals_inplace(xp, new_res);
++cnt;
} while(retcode == 2 and cnt < 100);
DEBUG << "Lambda : " << lambda;
if (cnt == 100)
{
ERROR << "Too much linesearch iterations ! We stop";
}
x = xp;
p = lambda*p;
return retcode;
}
// Projection of the variables onto the feasible set
template <class Program, NCPfunction ncp_t>
void MiCPSolverOLD<Program, ncp_t>::projection(Eigen::VectorXd &x)
{
for (int i=0; i<m_program->nb_complementarity_variables(); ++i)
{
if (x(i+m_program->nb_free_variables()) < get_options().projection_min_variable)
{
x(i+m_program->nb_free_variables()) = 0;
}
}
}
template <class Program, NCPfunction ncp_t>
double MiCPSolverOLD<Program, ncp_t>::is_step_too_long(Eigen::VectorXd& update)
{
double steplength = update.norm();
if (steplength > get_options().maxstep)
{
m_max_taken = true;
update = get_options().maxstep / steplength * update;
steplength = get_options().maxstep;
}
return steplength;
}
// ================================================= //
// //
// NCP functions and reformulation //
// //
// ================================================= //
template <>
inline double ncp_function<NCPfunction::penalizedFB>(double a, double b, double t)
{
return penalized_fisher_burmeister(a, b, t);
}
template <>
inline double ncp_function<NCPfunction::min>(double a, double b, double _)
{
return std::min(a, b);
}
template <>
inline void reformulate_jacobian_helper<NCPfunction::penalizedFB>(
int neq,
int neq_free,
const Eigen::VectorXd& x,
const Eigen::VectorXd& r,
Eigen::MatrixXd& jacobian,
Eigen::VectorXd& _,
double t
)
{
// set the z vector : contains 1 for degenerate points
Eigen::VectorXd z(Eigen::VectorXd::Zero(neq));
for (int i=neq_free; i<neq; ++i)
{
if (x(i) == 0 and r(i) == 0)
z(i) = 1.0;
}
// modify the jacobian
const double lambda = t;
for (int i=neq_free; i<neq; ++i)
{
Eigen::VectorXd grad_fi = jacobian.block(i, 0, 1, neq).transpose();
if (z(i) != 0)
{
double gpdotz = grad_fi.dot(z);
double s = std::abs(z(i)) + std::abs(gpdotz);
s = s * std::sqrt(z(i)*z(i)/(s*s) + gpdotz*gpdotz/(s*s));
const double c = lambda*(z(i)/s - 1);
const double d = lambda*(gpdotz/s -1);
grad_fi = d*grad_fi;
grad_fi(i) += c;
}
else
{
double s = std::abs(x(i)) + std::abs(r(i));
s = s * std::sqrt(x(i)*x(i)/(s*s) + r(i)*r(i)/(s*s));
double c = lambda*(x(i)/s - 1);
double d = lambda*(r(i)/s - 1);
if ((lambda <1) and (r(i) > 0) and (x(i) >0))
{
c -= (1-lambda)*r(i);
d -= (1-lambda)*x(i);
}
grad_fi = d*grad_fi;
grad_fi(i) += c;
}
jacobian.block(i, 0, 1, neq) = grad_fi.transpose();
}
}
template <>
inline void reformulate_jacobian_helper<NCPfunction::min>(
int neq,
int neq_free,
const Eigen::VectorXd& x,
const Eigen::VectorXd& r,
Eigen::MatrixXd& jacobian,
Eigen::VectorXd& r_phi,
double _
)
{
std::vector<int> to_keep;
to_keep.reserve(10);
Eigen::VectorXd to_remove(neq-neq_free);
for (int i=neq_free; i<neq; ++i)
{
if (x(i) >= r(i))
{
to_remove(i-neq_free) = 0;
to_keep.push_back(i);
}
else
to_remove(i-neq_free) = x(i);
}
r_phi.block(0, 0, neq_free, 1) -= jacobian.block(0, neq_free, neq_free, neq-neq_free)*to_remove;
int new_i = neq_free;
for (auto it=to_keep.begin(); it!=to_keep.end(); ++it)
{
//r_phi.block(0, 0, neq_free, 1) += x(*it)*jacobian.block(0, *it, neq_free, 1);
jacobian.block(new_i, 0, 1, neq_free) = jacobian.block(*it, 0, 1, neq_free); // the bottom right corner is 0
jacobian.block(0, new_i, neq_free, 1) = jacobian.block(0, *it, neq_free, 1);
r_phi(new_i) = r_phi(*it);
++new_i;
}
r_phi.conservativeResize(new_i);
jacobian.conservativeResize(new_i, new_i);
DEBUG << jacobian;
}
template <>
inline void reformulate_result<NCPfunction::penalizedFB>(
int neq,
int neq_free,
Eigen::VectorXd& x,
const Eigen::VectorXd& orig_r,
Eigen::VectorXd& grad_phi,
Eigen::VectorXd& update
)
{}
template <>
inline void reformulate_result<NCPfunction::min>(
int neq,
int neq_free,
Eigen::VectorXd& x,
const Eigen::VectorXd& orig_r,
Eigen::VectorXd& grad_phi,
Eigen::VectorXd& update
)
{
//std::cout << " Update \n ------- \n " << update << std::endl;
int tot_to_keep = 0;
for (int i=neq_free; i<neq; ++i)
{
if (x(i) >= orig_r(i))
++tot_to_keep;
}
//std::cout << " update \n ------ \n" << update.block(neq_free, 0, tot_to_keep, 1) << std::endl;
update.conservativeResize(neq);
grad_phi.conservativeResize(neq);
int kept_i = 1;
for (int i=neq-1; i>=neq_free; --i)
{ // we go backwards to avoid extra copies
//std::cout << i << " # " << x(i) << " - " << orig_r(i) << std::endl;
if (x(i) >= orig_r(i))
{
//std::cout << i << std::endl;
update(i) = update(neq_free+(tot_to_keep-kept_i));
//std::cout << update(i) << std::endl;
grad_phi(i) = grad_phi(neq_free+(tot_to_keep-kept_i));
++kept_i;
}
else
{
//x(i) = 0.0;
//update(i) = 0.0;
update(i) = -x(i);
grad_phi(i) = x(i);
}
}
}
} // end namespace micpsolver
} // end namespace specmicp
Event Timeline
Log In to Comment