Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91396286
parabolic_driver.inl
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 17:12
Size
15 KB
Mime Type
text/x-c++
Expires
Tue, Nov 12, 17:12 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22257048
Attached To
rSPECMICP SpecMiCP / ReactMiCP
parabolic_driver.inl
View Options
#include "parabolic_driver.hpp" // for syntaxic coloration only
#include "utils/log.hpp"
//#include "utils/sparse_solver.hpp"
namespace specmicp {
namespace dfpmsolver {
template <class Program>
void ParabolicDriver<Program>::compute_jacobian(Vector& displacement,
Vector& velocity,
Eigen::SparseMatrix<scalar_t>& jacobian
)
{
program().compute_jacobian(displacement, velocity, jacobian, get_options().alpha*m_current_dt);
jacobian = jacobian*scaling().asDiagonal();
jacobian.makeCompressed();
get_perfs().nb_call_jacobian += 1;
}
template <class Program>
ParabolicDriverReturnCode ParabolicDriver<Program>::solve_timestep(scalar_t dt, Eigen::VectorXd& displacement)
{
initialize_timestep(dt, displacement);
return restart_timestep(displacement);
}
template <class Program>
void ParabolicDriver<Program>::initialize_timestep(scalar_t dt, Eigen::VectorXd& displacement)
{
initialize_scaling();
m_residuals = Eigen::VectorXd::Zero(get_neq());
m_current_dt = dt;
set_predictor(displacement);
reset_velocity();
program().apply_bc(dt, displacement, m_velocity);
compute_residuals(displacement, m_velocity, m_residuals);
m_norm_0 = norm_residuals();
get_perfs().nb_iterations = 0;
}
template <class Program>
void ParabolicDriver<Program>::set_predictor(Vector& displacement)
{
if (get_options().alpha < 1)
m_predictor = displacement + (1-get_options().alpha)*m_current_dt*m_velocity;
else
m_predictor = displacement;
}
template <class Program>
scalar_t ParabolicDriver<Program>::update_norm(const Vector& update)
{
// l-∞ scaled norm
scalar_t norm = 0.0;
for (index_t dof=0; dof<program().get_tot_ndf(); ++dof)
{
const index_t id_eq = program().id_equation(dof);
if (id_eq == no_species or update(id_eq) == 0.0) continue;
norm = std::max(norm, std::abs(update(id_eq))/(std::max(std::abs(m_velocity(dof)), 1.0/scaling(id_eq))));
}
return norm;
}
template <class Program>
ParabolicDriverReturnCode ParabolicDriver<Program>::restart_timestep(Vector& displacement)
{
ParabolicDriverReturnCode return_code = ParabolicDriverReturnCode::NotConvergedYet;
//m_solver.reset(nullptr);
Eigen::VectorXd update(get_neq());
update.setZero();
get_perfs().current_update = 0;
bool force_recompute_jacobian = true;
while (return_code == ParabolicDriverReturnCode::NotConvergedYet)
{
compute_residuals(displacement, m_velocity, m_residuals);
get_perfs().absolute_residual = m_residuals.norm();
get_perfs().current_residual = m_residuals.norm()/m_norm_0;
get_perfs().current_update = update_norm(update);
DEBUG << " NB iterations : " << get_perfs().nb_iterations
<< " - res : " << get_perfs().current_residual
<< " - update : " << get_perfs().current_update;
return_code = check_convergence();
if (return_code != ParabolicDriverReturnCode::NotConvergedYet) break;
if (m_solver == nullptr)
{
m_solver = sparse_solvers::get_sparse_solver<
Eigen::SparseMatrix<scalar_t>, Vector, Vector>(get_options().sparse_solver);
compute_jacobian(displacement, m_velocity, m_jacobian);
m_solver->analyse_pattern(m_jacobian);
m_solver->decompose(m_jacobian);
force_recompute_jacobian =false;
}
else if (force_recompute_jacobian
or get_perfs().nb_iterations % get_options().quasi_newton == 0)
{
compute_jacobian(displacement, m_velocity, m_jacobian);
m_solver->decompose(m_jacobian);
}
get_perfs().nb_iterations += 1;
m_gradient = m_jacobian.transpose()*m_residuals;
sparse_solvers::SparseSolverReturnCode retcode = m_solver->solve_scaling(m_residuals, scaling(), update);
if (retcode != sparse_solvers::SparseSolverReturnCode::Success)
{
ERROR << "Error when solving linear system : " << (int) retcode << std::endl;
return ParabolicDriverReturnCode::ErrorLinearSystem;
}
//if (update.norm() < get_options().step_tolerance) return_code = ParabolicDriverReturnCode::ErrorMinimized;
//else
return_code = linesearch(update, displacement);
}
return return_code;
}
template <class Program>
ParabolicDriverReturnCode ParabolicDriver<Program>::check_convergence()
{
ParabolicDriverReturnCode termcode = ParabolicDriverReturnCode::NotConvergedYet;
const int nb_iterations = get_perfs().nb_iterations;
const scalar_t norm_residuals = get_perfs().current_residual;
const scalar_t norm_update = get_perfs().current_update;
//std::cout << "Residuals : " << nb_iterations << " - " << norm_residuals/m_norm_0 << std::endl;
DEBUG << "Residuals : " << nb_iterations << " - " << norm_residuals/m_norm_0;
if (norm_residuals < get_options().residuals_tolerance)
{
termcode = ParabolicDriverReturnCode::ResidualMinimized;
}
else if (get_perfs().absolute_residual < get_options().absolute_tolerance)
{
termcode = ParabolicDriverReturnCode::ResidualMinimized;
}
else if (nb_iterations > 0 and norm_update > 0.0 and norm_update < 1.01*get_options().step_tolerance)
{
if (norm_residuals > get_options().threshold_stationary_point)
{
ERROR << "Stationary point detected !";
termcode = ParabolicDriverReturnCode::StationaryPoint;
}
WARNING << "Error is minimized - may indicate a stationnary point";
termcode = ParabolicDriverReturnCode::ErrorMinimized;
}
else if (nb_iterations > get_options().maximum_iterations)
{
ERROR << "Maximum number of iteration reached (" << get_options().maximum_iterations << ")";
termcode = ParabolicDriverReturnCode::MaxIterations;
}
else if (get_perfs().maximum_step_taken)
{
get_perfs().nb_consecutive_max_step_taken += 1;
get_perfs().nb_max_step_taken += 1;
if (get_perfs().nb_consecutive_max_step_taken == get_options().max_iterations_at_max_length) {
ERROR << "Divergence detected - Maximum step length taken two many times";
termcode = ParabolicDriverReturnCode::MaxStepTakenTooManyTimes;
}
}
else
{
get_perfs().nb_consecutive_max_step_taken = 0;
}
get_perfs().return_code = termcode;
return termcode;
}
template <class Program>
double ParabolicDriver<Program>::compute_residuals_linesearch(
Vector &update,
scalar_t lambda,
Vector &displacement
)
{
Eigen::VectorXd velocity(m_velocity);
Eigen::VectorXd residual = Eigen::VectorXd::Zero(get_neq());
program().update_solution(update, lambda, get_options().alpha*m_current_dt, m_predictor, displacement, velocity);
compute_residuals(displacement, velocity, residual);
return 0.5*residual.squaredNorm();
}
template <class Program>
double ParabolicDriver<Program>::compute_residuals_strang_linesearch(
Vector &update,
scalar_t lambda,
Vector &displacement
)
{
Eigen::VectorXd velocity(m_velocity);
Eigen::VectorXd residual = Eigen::VectorXd::Zero(get_neq());
program().update_solution(update, lambda, get_options().alpha*m_current_dt, m_predictor, displacement, velocity);
compute_residuals(displacement, velocity, residual);
return update.dot(residual);
}
template <class Program>
void ParabolicDriver<Program>::update_variable(
const Vector& update,
scalar_t lambda,
Vector& displacement
)
{
program().update_solution(update, lambda, get_options().alpha*m_current_dt,
m_predictor, displacement, m_velocity);
}
template <class Program>
ParabolicDriverReturnCode ParabolicDriver<Program>::linesearch(
Vector &update,
Vector &displacements
)
{
base::is_step_too_long(update);
get_perfs().maximum_step_taken = false;
scalar_t lambda;
ParabolicLinesearchReturnCode retcode;
switch (get_options().linesearch) {
case ParabolicLinesearch::Bactracking:
retcode = backtracking_linesearch(update, displacements, lambda);
break;
case ParabolicLinesearch::Strang:
retcode = strang_linesearch(update, displacements, lambda);
break;
default:
throw std::runtime_error("Linesearch type for Parabolic driver is not recognized");
break;
}
if (retcode != ParabolicLinesearchReturnCode::Success)
{
return ParabolicDriverReturnCode::LinesearchFailed;
}
update_variable(update, lambda, displacements);
update *= lambda;
return ParabolicDriverReturnCode::NotConvergedYet;
}
namespace internal
{
//! \brief Return true if a and b have the same sign
inline bool have_same_sign(double a, double b)
{
return (std::copysign(1., a) * std::copysign(1., b) > 0);
}
} // end namespace internal
template <class Program>
ParabolicLinesearchReturnCode ParabolicDriver<Program>::strang_linesearch(
Vector& update,
Vector& displacements,
scalar_t& lambda
)
{
DEBUG << "Strang linesearch";
Eigen::VectorXd xp(displacements);
const scalar_t s_tol = 0.5;
const scalar_t s_max = 2.0;
const int lin_max = 10;
scalar_t s_b = 0.0;
scalar_t g_b = 0.5*m_residuals.squaredNorm();
scalar_t s_a = 1.0;
scalar_t g_a = compute_residuals_strang_linesearch(update, 1.0, xp);
scalar_t newtlen = (scaling().asDiagonal()*update).norm();
// const scalar_t s_r = s_a;
const scalar_t g_r = g_a;
if (std::abs(g_a) <= s_tol*std::abs(g_b))
{
DEBUG << "Skip linesearch ";
lambda = 1.0;
if (lambda == 1.0 and (newtlen > 0.99 * get_options().maximum_step_length)) {
get_perfs().maximum_step_taken = true;
}
return ParabolicLinesearchReturnCode::Success;
}
while (internal::have_same_sign(g_a, g_b) and s_a < s_max)
{
s_b = s_a;
s_a = 2*s_a;
g_b = g_a;
g_a = compute_residuals_strang_linesearch(update, s_a, xp);
}
scalar_t g_ = g_a;
scalar_t g_0 = g_a;
scalar_t s = s_a;
int l;
for (l=0; l<lin_max; ++l)
{
if (internal::have_same_sign(g_a, g_b) or
std::abs(g_) < s_tol*std::abs(g_0)
or std::abs(s_a - s_b) < s_tol*(s_a + s_b)/2 )
break;
s = s_a - g_a * ( s_a - s_b)/(g_a - g_b);
g_ = compute_residuals_strang_linesearch(update, s, xp);
if (internal::have_same_sign(g_, g_a))
g_b = g_b/2.;
else
{
s_b = s_a;
g_b = g_a;
}
s_a = s;
g_a = g_;
}
if (l == lin_max) return ParabolicLinesearchReturnCode::MaximumIterations;
if (g_a >= g_r) {
WARNING << "Failed to find better update in Strang linesearch";
//lambda = 0.1*s_r;
return backtracking_linesearch(update, displacements, lambda);
}
lambda = s_a;
if (lambda == 1.0 and (newtlen > 0.99 * get_options().maximum_step_length)) {
get_perfs().maximum_step_taken = true;
}
return ParabolicLinesearchReturnCode::Success;
}
template <class Program>
ParabolicLinesearchReturnCode ParabolicDriver<Program>::backtracking_linesearch(
Vector& update,
Vector& displacements,
scalar_t& lambda_out
)
{
// References
// ----------
// - Algo A6.3.1 : Dennis and Schnabel (1983)
// - Nocedal & Wrigth (2006)
DEBUG << "Linesearch";
Eigen::VectorXd xp(displacements);
double fcp;
int retcode = 2; // 2 not converged, 1 problem, 0 success
const scalar_t alpha = 1e-4;
scalar_t newtlen = (scaling().asDiagonal()*update).norm();
scalar_t init_slope = m_gradient.dot(update);
const scalar_t rellength = update_norm(update);
const scalar_t minlambda = get_options().step_tolerance / rellength;
scalar_t lambda = 1.0;
scalar_t lambda_prev = lambda;
scalar_t merit_value = 0.5*m_residuals.squaredNorm();
// new residual
fcp = compute_residuals_linesearch(update, lambda, xp);
// Skip linesearch if enough progress is done
// ------------------------------------------
if (fcp < get_options().coeff_accept_newton_step *merit_value)
{
DEBUG << "Skip linesearch ";
lambda_out = 1.0;
return ParabolicLinesearchReturnCode::Success;
}
// The linesearch
// --------------
scalar_t fc = merit_value;
scalar_t fcp_prev;
int cnt = 0;
do
{
SPAM << "cnt : " <<cnt << " - lambda : " << lambda << " # " << fc << " # " << fcp << " # " << init_slope;
if (fcp <= fc + alpha*lambda*init_slope) //pg760 Fachinei2003
{
retcode = 0;
if (lambda == 1.0 and (newtlen > 0.99 * get_options().maximum_step_length)) {
get_perfs().maximum_step_taken = true;
}
break;
}
else if (lambda < minlambda)
{
retcode = 0;
lambda = minlambda;
//retcode = 1;
break;
}
else
{
//WARNING << "denom : " << fcp - fc -init_slope;
// Select a new step length
// - - - - - - - - - - - -
double lambdatmp;
if (cnt == 0) { // only a quadratic at the first
lambdatmp = - init_slope / (2*(fcp - fc -init_slope));
}
else
{
const scalar_t factor = 1.0 /(lambda - lambda_prev);
const scalar_t x1 = fcp - fc - lambda*init_slope;
const scalar_t x2 = fcp_prev - fc - lambda_prev*init_slope;
const scalar_t a = factor * ( x1/(lambda*lambda) - x2/(lambda_prev*lambda_prev));
const scalar_t b = factor * ( -x1*lambda_prev/(lambda*lambda) + x2*lambda/(lambda_prev*lambda_prev));
if (a == 0)
{ // cubic interpolation is in fact a quadratic interpolation
lambdatmp = - init_slope/(2*b);
}
else
{
const scalar_t disc = b*b-3*a*init_slope;
lambdatmp = (-b+std::sqrt(disc))/(3*a);
}
if (lambdatmp > 0.5*lambda ) lambdatmp = 0.5*lambda;
}
//WARNING << "lambdatmp : " << lambdatmp;
lambda_prev = lambda;
fcp_prev = fcp;
if (lambdatmp < 0.1*lambda) {
lambda = 0.1 * lambda;
} else {
lambda = lambdatmp;
}
}
if (not std::isfinite(lambda))
{
ERROR << "Lambda is non finite - we stop";
return ParabolicLinesearchReturnCode::Divergence;
}
fcp = compute_residuals_linesearch(update, lambda, xp);
//xp.velocity = x.velocity;
++cnt;
} while(retcode == 2 and cnt < 50);
//WARNING << "Lambda : " << lambda << " - iterations : " << cnt;
if (cnt == 50)
{
ERROR << "Too much linesearch iterations ! We stop";
return ParabolicLinesearchReturnCode::MaximumIterations;
}
lambda_out = lambda;
switch (retcode) {
case 0:
return ParabolicLinesearchReturnCode::Success;
break;
case 1:
return ParabolicLinesearchReturnCode::LambdaTooSmall;
default:
return ParabolicLinesearchReturnCode::NotSupposedToHappen;
break;
}
}
template <class Program>
void ParabolicDriver<Program>::set_velocity(Vector& velocity_vector)
{
m_velocity.resize(program().get_tot_ndf());
m_velocity.setZero();
for (index_t dof=0; dof<program().get_tot_ndf(); ++dof)
{
if (program().id_equation(dof) == no_equation)
{
m_velocity(dof) = velocity_vector(dof);
}
}
}
template <class Program>
void ParabolicDriver<Program>::reset_velocity()
{
for (index_t dof=0; dof<program().get_tot_ndf(); ++dof)
{
if (program().id_equation(dof) == no_equation) continue;
m_velocity(dof) = 0.0;
}
}
} // end namespace dfpmsolver
} // end namespace specmicp
Event Timeline
Log In to Comment