Page MenuHomec4science

transport_stagger.cpp
No OneTemporary

File Metadata

Created
Thu, Aug 22, 09:07

transport_stagger.cpp

/* =============================================================================
Copyright (c) 2014 - 2016
F. Georget <fabieng@princeton.edu> Princeton University
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
============================================================================= */
#include "transport_stagger.hpp"
#include "variables.hpp"
#include "reactmicp/solver/staggers_base/stagger_structs.hpp"
#include "transport_program.hpp"
#include "dfpm/solver/parabolic_driver.hpp"
#include "specmicp_common/compat.hpp"
namespace specmicp {
namespace reactmicp {
namespace systems {
namespace satdiff {
// Declaration of the implementation of the stagger
struct SaturatedTransportStagger::SaturatedTransportStaggerImpl
{
scalar_t m_dt {-1};
scalar_t m_residual_0 {-1};
SaturatedDiffusion m_program;
dfpmsolver::ParabolicDriver<SaturatedDiffusion> m_solver;
SaturatedTransportStaggerImpl(SaturatedVariables* variables,
std::vector<index_t>& list_fixed_nodes):
m_program(variables, list_fixed_nodes),
m_solver(m_program)
{}
SaturatedTransportStaggerImpl(
SaturatedVariables* variables,
std::vector<index_t>& list_fixed_nodes,
std::map<index_t, index_t>& list_slave_nodes,
std::vector<index_t>& list_immobile_components):
m_program(variables,
list_fixed_nodes,
list_slave_nodes,
list_immobile_components),
m_solver(m_program)
{}
void initialize_timestep(
scalar_t dt,
SaturatedVariables * const variables
);
solver::StaggerReturnCode restart_timestep(
SaturatedVariables * const variables
);
scalar_t get_residual(
SaturatedVariables * const var
);
scalar_t get_residual_0() {return m_residual_0;}
dfpmsolver::ParabolicDriverOptions& get_options() {
return m_solver.get_options();
}
//! \brief Translate a ParabolicDriverReturnCode to a StaggerReturnCode
static solver::StaggerReturnCode parabolic2StaggerReturnCode(
dfpmsolver::ParabolicDriverReturnCode retcode);
};
SaturatedTransportStagger::SaturatedTransportStagger(
SaturatedVariablesPtr variables,
std::vector<index_t> list_fixed_nodes
):
m_impl(make_unique<SaturatedTransportStaggerImpl>(
variables.get(),
list_fixed_nodes)
)
{
}
SaturatedTransportStagger::SaturatedTransportStagger(
SaturatedVariablesPtr variables,
std::vector<index_t> list_fixed_nodes,
std::map<index_t, index_t> list_slave_nodes,
std::vector<index_t> list_immobile_components):
m_impl(make_unique<SaturatedTransportStaggerImpl>(
variables.get(),
list_fixed_nodes,
list_slave_nodes,
list_immobile_components)
)
{
}
SaturatedTransportStagger::~SaturatedTransportStagger() = default;
using VarConstPtr = SaturatedVariables * const;
//! \brief Initialize the stagger at the beginning of an iteration
void SaturatedTransportStagger::initialize_timestep(
scalar_t dt,
VariablesBase * const var
)
{
VarConstPtr true_var = static_cast<VarConstPtr>(var);
m_impl->initialize_timestep(dt, true_var);
}
//! \brief Solve the equation for the timestep
solver::StaggerReturnCode
SaturatedTransportStagger::restart_timestep(VariablesBase* var)
{
SaturatedVariables* true_var = static_cast<SaturatedVariables*>(var);
return m_impl->restart_timestep(true_var);
}
scalar_t SaturatedTransportStagger::get_update(VariablesBase * const var)
{
return static_cast<VarConstPtr>(var)->velocity().norm();
}
//! \brief Compute the residuals norm
scalar_t SaturatedTransportStagger::get_residual(VariablesBase * const var)
{
VarConstPtr true_var = static_cast<VarConstPtr>(var);
return m_impl->get_residual(true_var);
}
scalar_t SaturatedTransportStagger::get_residual_0(VariablesBase * const _)
{
return m_impl->get_residual_0();
}
dfpmsolver::ParabolicDriverOptions& SaturatedTransportStagger::options_solver()
{
return m_impl->get_options();
}
// ################ //
// //
// Implementation //
// //
// ############### //
void
SaturatedTransportStagger::SaturatedTransportStaggerImpl::initialize_timestep(
scalar_t dt,
SaturatedVariables * const var
)
{
m_dt = dt;
// Set the predictor
var->predictor() = var->displacement();
// Reset the values
var->velocity().setZero();
var->transport_rate().setZero();
m_program.set_variables(var);
// Initialize the DFPM solver
m_solver.initialize_timestep(dt, var->displacement());
// Compute the initial residual without external rate :
Eigen::VectorXd residuals;
m_program.compute_residuals(var->displacement(), var->velocity(), residuals, m_program.NO_CHEMISTRY_RATE);
m_residual_0 = residuals.norm();
}
//! \brief Solve the equation for the timestep
solver::StaggerReturnCode
SaturatedTransportStagger::SaturatedTransportStaggerImpl::restart_timestep(
SaturatedVariables * const var
)
{
m_solver.velocity() = var->velocity();
dfpmsolver::ParabolicDriverReturnCode retcode = m_solver.restart_timestep(var->displacement());
// copy variables if successful
if (retcode > dfpmsolver::ParabolicDriverReturnCode::NotConvergedYet)
{
var->velocity() = m_solver.velocity();
}
return parabolic2StaggerReturnCode(retcode);
}
scalar_t
SaturatedTransportStagger::SaturatedTransportStaggerImpl::get_residual(
SaturatedVariables * const var
)
{
Eigen::VectorXd residuals;
m_program.compute_residuals(var->displacement(), var->velocity(), residuals);
return residuals.norm();
}
//! \brief Translate a ParabolicDriverReturnCode to a StaggerReturnCode
solver::StaggerReturnCode
SaturatedTransportStagger::SaturatedTransportStaggerImpl::parabolic2StaggerReturnCode(
dfpmsolver::ParabolicDriverReturnCode retcode
)
{
using ParRC = dfpmsolver::ParabolicDriverReturnCode;
using StaRC = solver::StaggerReturnCode;
switch (retcode)
{
case ParRC::ResidualMinimized:
return StaRC::ResidualMinimized;
break;
case ParRC::ErrorMinimized:
return StaRC::ErrorMinimized;
break;
default: // error
switch(retcode)
{
case ParRC::MaxIterations:
return StaRC::MaximumIterationsReached;
break;
case ParRC::StationaryPoint:
return StaRC::StationaryPoint;
break;
case ParRC::NotConvergedYet:
return StaRC::NotConvergedYet;
break;
default:
return StaRC::UnknownError;
}
}
}
} // end namespace satdiff
} // end namespace systems
} // end namespace reactmicp
} // end namespace specmicp

Event Timeline