Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F96340882
variables.hpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 25, 14:44
Size
7 KB
Mime Type
text/x-c++
Expires
Fri, Dec 27, 14:44 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23166419
Attached To
rSPECMICP SpecMiCP / ReactMiCP
variables.hpp
View Options
#ifndef SPECMICP_REACTMICP_SYSTEMS_SATURATED_VARIABLES_HPP
#define SPECMICP_REACTMICP_SYSTEMS_SATURATED_VARIABLES_HPP
#include "database.hpp"
#include "reactmicp/solver/staggers_base/variables_base.hpp"
#include "specmicp/adimensional/adimensional_system_solution.hpp"
#include <vector>
// forward declaration
// ===================
#include "dfpm/meshes/mesh1dfwd.hpp"
namespace
specmicp
{
namespace
reactmicp
{
namespace
solver
{
using
VariablesBasePtr
=
std
::
shared_ptr
<
VariablesBase
>
;
}
namespace
systems
{
namespace
satdiff
{
class
SaturatedVariablesFactory
;
}
// end namespace satdiff
}
// end namespace systems
}
// end namespace reactmicp
}
// end namespace specmicp
// Class declaration
// =================
namespace
specmicp
{
namespace
reactmicp
{
namespace
systems
{
namespace
satdiff
{
//! \brief Variables for the saturated reactive transport system
//!
//! Contain all the variables that need to be shared between the staggers
class
SaturatedVariables
:
public
solver
::
VariablesBase
{
// SaturatedVariablesFactory should be the class to use to inialize
// the variables correctly
friend
class
SaturatedVariablesFactory
;
public
:
SaturatedVariables
(
mesh
::
Mesh1DPtr
the_mesh
,
RawDatabasePtr
the_database
);
//! \brief Return the mesh
mesh
::
Mesh1DPtr
get_mesh
()
{
return
m_mesh
;}
//! \brief Return the database
RawDatabasePtr
get_database
()
{
return
m_database
;}
//! \brief Return the number of components
index_t
nb_component
()
{
return
m_database
->
nb_component
;}
//! \brief Return the number of nodes
index_t
nb_nodes
()
{
return
m_is_fixed_composition
.
size
();}
//! \brief Return true if 'node' has a fixed composition
index_t
is_fixed_composition
(
index_t
node
)
{
return
m_is_fixed_composition
[
node
];}
// Main variables
// ==============
//! \brief Return the main variable vector
Vector
&
displacement
()
{
return
m_displacement
;}
//! \brief Return the main variable vector at the beginning of the timestep
Vector
&
predictor
()
{
return
m_predictor
;}
//! \brief Return the velocity of the main variables
Vector
&
velocity
()
{
return
m_velocity
;}
//! \brief Return the rate of change of the main variables due to the transport operator
Vector
&
transport_rate
()
{
return
m_transport_rate
;}
//! \brief Return the rate of change of the main variables due to the chemistry operator
Vector
&
chemistry_rate
()
{
return
m_chemistry_rate
;}
// Access to main variables
// ========================
//! \brief Return the number of degree of freedom (per node) in the main variables vector
index_t
ndf
()
{
return
2
*
m_database
->
nb_component
;}
//! \brief Return the offset of 'node' in the main variables vector
index_t
offset_node
(
index_t
node
)
{
return
node
*
ndf
();}
//! \brief Return the offset of the aqueous concentration variables in the main variables vector
index_t
offset_aqueous_concentration
()
{
return
0
;}
//! \brief Return the offset of the aqueous concentrations variables in the main variables vector
index_t
offset_aqueous_concentration
(
index_t
node
)
{
return
offset_aqueous_concentration
()
+
offset_node
(
node
);}
//! \brief Return the offset of the solid concentration variables in the main variables vector
index_t
offset_solid_concentration
()
{
return
m_database
->
nb_component
;}
//! \brief Return the offset of the solid concentrations variables in the main variables vector
index_t
offset_solid_concentration
(
index_t
node
)
{
return
offset_solid_concentration
()
+
offset_node
(
node
);}
//! \brief Return the degree of freedom number for the aqueous concentration of 'component' at 'node'
index_t
dof_aqueous_concentration
(
index_t
node
,
index_t
component
)
{
return
(
component
+
offset_aqueous_concentration
(
node
));
}
//! \brief Return the degree of freedom number for the solid concentration of 'component' at 'node'
index_t
dof_solid_concentration
(
index_t
node
,
index_t
component
)
{
return
(
component
+
offset_solid_concentration
(
node
));
}
//! \brief Return the aqueous concentration of 'component' at 'node' in 'var'
//!
//! 'var' is any of the main variables vector, it may be a velocity vector
scalar_t
&
aqueous_concentration
(
index_t
node
,
index_t
component
,
Vector
&
var
)
{
return
var
(
dof_aqueous_concentration
(
node
,
component
));
}
//! \brief Return the solid concentration of 'component' at 'node' in 'var'
//!
//! 'var' is any of the main variables vector, it may be a velocity vector
scalar_t
&
solid_concentration
(
index_t
node
,
index_t
component
,
Vector
&
var
){
return
var
(
dof_solid_concentration
(
node
,
component
));
}
//! \brief Return a vector containing the total concentrations computed from the main variables
//!
//! This is to be used to restart the chemistry computation
Vector
total_concentrations
(
index_t
node
);
// Equilibrium
// ===========
//! \brief Returh the solution of the speciation solver at 'node'
AdimensionalSystemSolution
&
equilibrium_solution
(
index_t
node
)
{
return
m_equilibrium_solutions
[
node
];
}
// Upscaling
// =========
//! \brief Return the offset for 'node' in the upscaling variables vector
index_t
offset_node_upscaling
(
index_t
node
)
{
return
ndf_upscaling
()
*
node
;}
//! \brief Return the number fo degree of freedom (per node) for the upscaling vector
index_t
ndf_upscaling
()
{
return
3
;}
//! \brief Return the degree of freedom for the porosity at 'node'
index_t
dof_porosity
(
index_t
node
)
{
return
0
+
offset_node_upscaling
(
node
);}
//! \brief Return the degree of freedom of the porosity velocity at 'node'
index_t
dof_vel_porosity
(
index_t
node
)
{
return
1
+
offset_node_upscaling
(
node
);}
//! \brief Return the degree of freedom of the diffusion coefficient at 'node'
index_t
dof_diffusion_coefficient
(
index_t
node
)
{
return
1
+
offset_node_upscaling
(
node
);}
//! \brief Return the porosity at 'node'
scalar_t
&
porosity
(
index_t
node
)
{
return
m_upscaling
(
dof_porosity
(
node
));}
//! \brief Return the rate of change of the porosity at 'node'
scalar_t
&
vel_porosity
(
index_t
node
)
{
return
m_upscaling
(
dof_vel_porosity
(
node
));}
//! \brief Return the diffusion coefficient at 'node'
scalar_t
&
diffusion_coefficient
(
index_t
node
)
{
return
m_upscaling
(
dof_diffusion_coefficient
(
node
));}
private
:
// ############ //
// Attributes //
// ############ //
RawDatabasePtr
m_database
;
mesh
::
Mesh1DPtr
m_mesh
;
std
::
vector
<
bool
>
m_is_fixed_composition
;
// Main variables
// ==============
Vector
m_displacement
;
Vector
m_predictor
;
Vector
m_velocity
;
Vector
m_transport_rate
;
Vector
m_chemistry_rate
;
// Equilibrium
// ===========
std
::
vector
<
AdimensionalSystemSolution
>
m_equilibrium_solutions
;
// Upscaling
// =========
Vector
m_upscaling
;
};
//! \brief typedef of a shared pointer of a SaturatedVariables
using
SaturatedVariablesPtr
=
std
::
shared_ptr
<
SaturatedVariables
>
;
// Casting function
// =================
//! \brief Static cast to a SaturatedVariablesPtr
SaturatedVariablesPtr
cast_var_from_base
(
solver
::
VariablesBasePtr
var
)
{
return
std
::
static_pointer_cast
<
SaturatedVariables
>
(
var
);
}
//! \brief Static cast from a SaturatedVariablesPtr
solver
::
VariablesBasePtr
cast_var_to_base
(
SaturatedVariablesPtr
var
)
{
return
std
::
static_pointer_cast
<
solver
::
VariablesBase
>
(
var
);
}
}
// end namespace satdiff
}
// end namespace systems
}
// end namespace reactmicp
}
// end namespace specmicp
#endif
// SPECMICP_REACTMICP_SYSTEMS_SATURATED_VARIABLES_HPP
Event Timeline
Log In to Comment