Page MenuHomec4science

adimensional_system.cpp
No OneTemporary

File Metadata

Created
Fri, May 10, 22:08

adimensional_system.cpp

/*-------------------------------------------------------
- Module : specmicp
- File : adim_system.cpp
- Author : Fabien Georget
Copyright (c) 2014, Fabien Georget <fabieng@princeton.edu>, Princeton University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Princeton University nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------*/
//#include <iostream>
#include <cmath>
#include "adimensional_system.hpp"
#include "utils/log.hpp"
#include "../equilibrium_data.hpp"
#include "physics/constants.hpp"
#include "physics/laws.hpp"
#include "adimensional_system_solution.hpp"
//#define SPECMICP_DEBUG_EQUATION_FD_JACOBIAN
namespace specmicp {
constexpr scalar_t log10 = std::log(10.0);
AdimensionalSystem::AdimensionalSystem(RawDatabasePtr ptrdata,
const AdimensionalSystemConstraints& constraints,
const AdimensionalSystemOptions& options)
:
OptionsHandler<AdimensionalSystemOptions>(options),
m_data(ptrdata),
m_fixed_values(constraints.total_concentrations),
m_secondary_conc(ptrdata->nb_aqueous),
m_loggamma(ptrdata->nb_component+ptrdata->nb_aqueous),
m_saturation_gas(0),
m_gas_fugacity(ptrdata->nb_gas),
m_inert_volume_fraction(constraints.inert_volume_fraction)
{
number_eq(constraints);
m_secondary_conc.setZero();
m_gas_fugacity.setZero();
m_loggamma.setZero();
}
AdimensionalSystem::AdimensionalSystem(
RawDatabasePtr ptrdata,
const AdimensionalSystemConstraints& constraints,
const AdimensionalSystemSolution& previous_solution,
const AdimensionalSystemOptions& options
):
OptionsHandler<AdimensionalSystemOptions>(options),
m_data(ptrdata),
m_fixed_values(constraints.total_concentrations),
m_secondary_conc(previous_solution.secondary_molalities),
m_loggamma(previous_solution.log_gamma),
m_ionic_strength(previous_solution.ionic_strength),
m_saturation_gas(0),
m_gas_fugacity(previous_solution.gas_fugacities),
m_inert_volume_fraction(constraints.inert_volume_fraction)
{
number_eq(constraints);
m_gas_fugacity.setZero();
}
void AdimensionalSystem::number_eq_aqueous_component(
const AdimensionalSystemConstraints& constraints,
index_t& neq
)
{
using EqT = AqueousComponentEquationType;
// First set the charge keeper
if (constraints.charge_keeper != no_species)
{
if (constraints.charge_keeper == 0 or constraints.charge_keeper > m_data->nb_component)
{
throw std::invalid_argument("The charge keeper must be an aqueous component : "
+ m_data->labels_basis[constraints.charge_keeper]);
}
m_component_equation_type[constraints.charge_keeper] = static_cast<int>(EqT::ChargeBalance);
}
// Then go over fix fugacity gas
for (auto it=constraints.fixed_fugacity_cs.begin(); it!=constraints.fixed_fugacity_cs.end(); ++it)
{
if (m_component_equation_type[it->id_component] != static_cast<int>(EqT::NoEquation))
{
throw std::invalid_argument("Component '" + m_data->labels_basis[it->id_component]
+ "' is already restrained");
}
m_component_equation_type[it->id_component] = static_cast<int>(EqT::FixedFugacity);
m_fixed_values(it->id_component) = it->log_value;
m_fixed_activity_species[it->id_component] = it->id_gas;
}
// Then over the fix activity species
for (auto it=constraints.fixed_activity_cs.begin(); it!=constraints.fixed_activity_cs.end(); ++it)
{
if (m_component_equation_type[it->id_component] != static_cast<int>(EqT::NoEquation))
{
throw std::invalid_argument("Component '" + m_data->labels_basis[it->id_component]
+ "' is already restrained");
}
m_component_equation_type[it->id_component] = static_cast<int>(EqT::FixedActivity);
m_fixed_values(it->id_component) = it->log_value;
}
// Finally number the equations
for (index_t component: m_data->range_aqueous_component())
{
// Mass is conserved for this component
if (m_component_equation_type[component] == static_cast<int>(EqT::NoEquation)
and m_fixed_values(component) != 0.0)
{
m_component_equation_type[component] = static_cast<int>(EqT::MassConservation);
m_ideq[component] = neq;
++neq;
}
// Or this is another type of equation
else if (m_component_equation_type[component] != static_cast<int>(EqT::NoEquation))
{
m_ideq[component] = neq;
++neq;
}
// else add component to the nonactive component list
else
{
m_nonactive_component.push_back(component);
}
}
DEBUG << "non active component list :";
if (stdlog::ReportLevel() >= logger::Debug)
{
for (auto it: m_nonactive_component)
{
DEBUG << " - " << it;
}
}
}
void AdimensionalSystem::number_eq(
const AdimensionalSystemConstraints& constraints
)
{
index_t neq = 0;
m_ideq =std::vector<index_t>(m_data->nb_component+m_data->nb_mineral, no_equation);
m_component_equation_type = std::vector<int>(m_data->nb_component, no_equation);
m_fixed_activity_species = std::vector<index_t>(m_data->nb_component, no_species);
// Water
// =====
if (constraints.water_equation != WaterEquationType::NoEquation)
{
m_ideq[0] = neq;
m_component_equation_type[0] = static_cast<int>(constraints.water_equation);
++neq;
}
// Aqueous components
// ==================
number_eq_aqueous_component(constraints, neq);
m_nb_free_vars = neq;
// Minerals
// ========
for (index_t m: m_data->range_mineral())
{
bool can_precipitate = true;
// Remove minerals that cannot precipitate
for (auto it=m_nonactive_component.begin(); it!=m_nonactive_component.end(); ++it)
{
if (m_data->nu_mineral(m, *it) != 0)
{
can_precipitate = false;
break; // this is not a mineral that can precipitate
}
}
if (can_precipitate)
{
m_ideq[m_data->nb_component+m] = neq;
++neq;
}
}
m_nb_tot_vars = neq;
m_nb_compl_vars = m_nb_tot_vars - m_nb_free_vars;
// Secondary species
// =================
// Secondary aqueous species
// -------------------------
m_active_aqueous.reserve(m_data->nb_aqueous);
for (index_t j: m_data->range_aqueous())
{
bool can_exist = true;
for (auto it=m_nonactive_component.begin(); it!=m_nonactive_component.end(); ++it)
{
if (m_data->nu_aqueous(j,*it) != 0)
{
can_exist = false;
}
}
m_active_aqueous.push_back(can_exist);
}
m_active_gas.reserve(m_data->nb_gas);
// Gas
// ---
for (index_t k: m_data->range_gas())
{
bool can_exist = true;
for (auto it=m_nonactive_component.begin(); it!=m_nonactive_component.end(); ++it)
{
if (m_data->nu_gas(k,*it) != 0)
{
can_exist = false;
}
}
m_active_gas.push_back(can_exist);
}
}
scalar_t AdimensionalSystem::saturation_water(const Vector& x) const
{
if (ideq_w() != no_equation)
return x(ideq_w());
else
return 1.0 - sum_saturation_minerals(x) - m_inert_volume_fraction;
}
scalar_t AdimensionalSystem::saturation_mineral(const Vector& x, index_t mineral) const
{
specmicp_assert(mineral >= 0 and mineral < m_data->nb_mineral);
if (ideq_min(mineral) == no_equation) return 0.0;
else return x(ideq_min(mineral));
}
scalar_t AdimensionalSystem::sum_saturation_minerals(const Vector& x) const
{
scalar_t sum_saturations = 0.0;
for (index_t mineral: m_data->range_mineral())
{
sum_saturations += saturation_mineral(x, mineral);
}
return sum_saturations;
}
scalar_t AdimensionalSystem::density_water() const
{
return laws::density_water(units::celsius(25.0), length_unit(), mass_unit());
}
scalar_t AdimensionalSystem::molar_volume_mineral(index_t mineral) const
{
return m_data->molar_volume_mineral(mineral, length_unit());
}
scalar_t AdimensionalSystem::residual_water(const Vector& x) const
{
scalar_t res = 0;
if (m_component_equation_type[0] == static_cast<int>(WaterEquationType::MassConservation))
{
const scalar_t conc_w = density_water()*saturation_water(x);
res = total_concentration_bc(0) - conc_w/m_data->molar_mass_basis_si(0);
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j)) continue;
res -= conc_w*m_data->nu_aqueous(j, 0)*m_secondary_conc(j);
}
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) == no_equation or m_data->nu_mineral(m, 0) == 0.0) continue;
res -= m_data->nu_mineral(m, 0)*saturation_mineral(x, m)/molar_volume_mineral(m);
}
for (index_t k: m_data->range_gas())
{
if (m_data->nu_gas(k, 0) == 0.0) continue;
res -= m_data->nu_gas(k, 0)*saturation_gas_phase()*gas_fugacity(k)*gas_total_pressure()/(
constants::gas_constant*temperature());
}
res /= total_concentration_bc(0);
}
else if (m_component_equation_type[0] == static_cast<int>(WaterEquationType::SaturatedSystem))
{
res = 1 - saturation_water(x) - m_inert_volume_fraction;
for (index_t mineral: m_data->range_mineral())
{
res -= saturation_mineral(x, mineral);
}
}
return res;
}
scalar_t AdimensionalSystem::residual_component(const Vector &x, index_t component) const
{
const scalar_t conc_w = density_water()*saturation_water(x);
scalar_t res = total_concentration_bc(component) - conc_w*component_molality(x, component);
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j)) continue;
res -= conc_w*m_data->nu_aqueous(j, component)*secondary_molality(j);
}
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) == no_equation) continue;
res -= m_data->nu_mineral(m, component)*saturation_mineral(x, m)/molar_volume_mineral(m);
}
for (index_t k: m_data->range_gas())
{
if (m_data->nu_gas(k, component) == 0.0) continue;
res -= m_data->nu_gas(k, component)*saturation_gas_phase()*gas_fugacity(k)*gas_total_pressure()/(
constants::gas_constant*temperature());
}
res /= total_concentration_bc(component);
return res;
}
scalar_t AdimensionalSystem::residual_fixed_activity(const Vector& x, index_t component) const
{
scalar_t res = (fixed_activity_bc(component)
- log_gamma_component(component)
- log_component_molality(x, component)
);
res /= fixed_activity_bc(component);
return res;
}
scalar_t AdimensionalSystem::residual_fixed_fugacity(const Vector& x, index_t component) const
{
index_t id_g = m_fixed_activity_species[component];
scalar_t res = fixed_fugacity_bc(component) + m_data->logk_gas(id_g);
for (index_t component: m_data->range_aqueous_component())
{
if (m_data->nu_gas(id_g, component) == 0) continue;
res -= m_data->nu_gas(id_g, component)*( log_gamma_component(component)
+ log_component_molality(x, component));
}
res /= fixed_fugacity_bc(component);
return res;
}
scalar_t AdimensionalSystem::residual_mineral(const Vector& x, index_t m) const
{
scalar_t res = m_data->logk_mineral(m);
for (index_t i: m_data->range_aqueous_component())
{
if (m_data->nu_mineral(m, i) != 0)
res -= m_data->nu_mineral(m, i)*(log_component_molality(x, i) + log_gamma_component(i));
}
return res;
}
scalar_t AdimensionalSystem::residual_charge_conservation(const Vector& x) const
{
scalar_t res = 0.0;
for (index_t i: m_data->range_aqueous_component())
{
if (m_data->charge_component(i) != 0 and ideq_paq(i) != no_equation)
res += m_data->charge_component(i)*component_molality(x, i);
}
for (index_t j: m_data->range_aqueous())
{
if (m_data->charge_aqueous(j) == 0 and not is_aqueous_active(j)) continue;
res += m_data->charge_aqueous(j)*secondary_molality(j);
}
return res;
}
void AdimensionalSystem::get_residuals(const Vector& x, Vector& residual)
{
set_secondary_concentration(x);
if (ideq_w() != no_equation) residual(ideq_w()) = residual_water(x);
for (index_t i: m_data->range_aqueous_component())
{
switch (aqueous_component_equation_type(i))
{
case AqueousComponentEquationType::NoEquation:
continue;
case AqueousComponentEquationType::MassConservation:
residual(ideq_paq(i)) = residual_component(x, i);
break;
case AqueousComponentEquationType::ChargeBalance:
residual(ideq_paq(i)) = residual_charge_conservation(x);
break;
case AqueousComponentEquationType::FixedActivity:
residual(ideq_paq(i)) = residual_fixed_activity(x, i);
break;
case AqueousComponentEquationType::FixedFugacity:
residual(ideq_paq(i)) = residual_fixed_fugacity(x, i);
break;
}
}
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) != no_equation) residual(ideq_min(m)) = residual_mineral(x, m);
}
}
void AdimensionalSystem::get_jacobian(Vector& x, Matrix& jacobian)
// //non-optimized Finite difference, for test only
#ifdef SPECMICP_DEBUG_EQUATION_FD_JACOBIAN
{
const int neq = total_variables();
Eigen::VectorXd res(total_variables());
Eigen::VectorXd perturbed_res(total_variables());
get_residuals(x, res);
for (int j=0; j<neq; ++j)
{
double h = 1e-8*std::abs(x(j));
//h = std::copysign(h, x(j));
if (h==0) h = 1e-8;
double tmp = x(j);
x(j) += h;
h = x(j) - tmp;
get_residuals(x, perturbed_res);
for (int i=0; i<neq; ++i)
{
jacobian(i, j) = (perturbed_res(i) - res(i))/h;
}
x(j) = tmp;
}
//std::cout << jacobian << std::endl;
return;
}
#else // analytical jacobian
{
jacobian.resize(total_variables(), total_variables());
jacobian.setZero();
// water
jacobian_water(x, jacobian);
// aqueous component
jacobian_aqueous_components(x, jacobian);
// mineral equilibrium
jacobian_minerals(x, jacobian);
}
#endif
void AdimensionalSystem::jacobian_water(Vector& x, Matrix& jacobian)
{
if (water_equation_type() == WaterEquationType::MassConservation)
{
const scalar_t rho_w = density_water();
scalar_t tmp = -1.0/m_data->molar_mass_basis_si(0);
const scalar_t factor = total_concentration_bc(0);
for (index_t j: m_data->range_aqueous())
{
if ( m_data->nu_aqueous(j, 0) == 0 and not is_aqueous_active(j)) continue;
tmp -= m_data->nu_aqueous(j, 0)*secondary_molality(j);
}
}
jacobian(0, 0) = rho_w*tmp/factor;
const scalar_t conc_w = density_water()*saturation_water(x);
for (index_t k: m_data->range_aqueous_component())
{
if (ideq_paq(k) == no_equation) continue;
scalar_t tmp = 0;
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j)) continue;
tmp -= m_data->nu_aqueous(j,0)*m_data->nu_aqueous(j,k)*secondary_molality(j);
}
jacobian(0, ideq_paq(k)) = conc_w*log10 * tmp/factor;
}
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) == no_equation) continue;
jacobian(0, ideq_min(m)) = -m_data->nu_mineral(m, 0)/molar_volume_mineral(m)/factor;
}
}
else if (water_equation_type() == WaterEquationType::SaturatedSystem)
{
jacobian(0, 0) = -1;
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) == no_equation) continue;
jacobian(0, ideq_min(m)) = -1;
}
}
}
void AdimensionalSystem::jacobian_aqueous_components(Vector& x, Matrix& jacobian)
{
for (index_t i: m_data->range_aqueous_component())
{
const index_t idp = ideq_paq(i);
if (idp == no_equation) continue;
switch (aqueous_component_equation_type(i))
{
case AqueousComponentEquationType::NoEquation:
continue;
// Mass balance equation
// =====================
case AqueousComponentEquationType::MassConservation:
{
const scalar_t conc_w = density_water()*saturation_water(x);
const scalar_t factor = total_concentration_bc(i);
// Aqueous components
for (index_t k: m_data->range_aqueous_component())
{
if (ideq_paq(k) == no_equation) continue;
scalar_t tmp_iip = 0;
if (k == i) tmp_iip -= component_molality(x, i)*log10;
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j)) continue;
tmp_iip -= log10*m_data->nu_aqueous(j, i)*m_data->nu_aqueous(j, k)*secondary_molality(j);
}
jacobian(idp, ideq_paq(k)) = conc_w*tmp_iip/factor;
}
// Minerals
for (index_t m: m_data->range_mineral())
{
if (ideq_min(m) == no_equation) continue;
jacobian(idp, ideq_min(m)) = - m_data->nu_mineral(m, i)/molar_volume_mineral(m)/factor;
}
// Water
if (ideq_w() != no_equation)
{
scalar_t tmp_iw = -component_molality(x, i);
for (index_t j: m_data->range_aqueous())
{
if ( m_data->nu_aqueous(j, i) == 0 ) continue;
tmp_iw -= m_data->nu_aqueous(j, i)*secondary_molality(j);
}
jacobian(idp, ideq_w()) = density_water()*tmp_iw/factor;
}
break;
}
// Charge balance equation
// =======================
case AqueousComponentEquationType::ChargeBalance:
{
// Aqueous components
for (index_t k: m_data->range_aqueous_component())
{
const index_t idc = ideq_paq(k);
if (idc == no_equation) continue;
scalar_t tmp_drdb = 0.0;
if (m_data->charge_component(k) != 0.0)
tmp_drdb = m_data->charge_component(k);
// Secondary species
for (index_t j: m_data->range_aqueous())
{
if ( not is_aqueous_active(j)
or m_data->nu_aqueous(j, k) == 0.0
or m_data->charge_aqueous(j) == 0.0
)
continue;
scalar_t tmp_value = m_data->nu_aqueous(j, k)*m_data->charge_aqueous(j);
tmp_value *= secondary_molality(j)/component_molality(x, k);
tmp_drdb += tmp_value;
}
jacobian(idp, idc) += component_molality(x,k)*log10*tmp_drdb;
}
break;
}
// Fixed activity equation
// =======================
case AqueousComponentEquationType::FixedActivity:
jacobian(idp, idp) = -1.0/fixed_activity_bc(i);
break;
// Fixed fugacity equation
// =======================
case AqueousComponentEquationType::FixedFugacity:
{
index_t id_g = m_fixed_activity_species[i];
for (index_t k: m_data->range_aqueous_component())
{
if (ideq_paq(k) == no_equation or m_data->nu_gas(id_g, k) == 0.0) continue;
jacobian(idp, ideq_paq(k)) = -m_data->nu_gas(id_g, k)/fixed_fugacity_bc(i);
}
break;
} // end case
} // end switch
}
}
void AdimensionalSystem::jacobian_minerals(Vector& x, Matrix& jacobian)
{
for (index_t m: m_data->range_mineral())
{
const index_t idm = ideq_min(m);
if (idm == no_equation) continue;
for (index_t i: m_data->range_aqueous_component())
{
if (ideq_paq(i) == no_equation) continue;
jacobian(idm, ideq_paq(i)) = -m_data->nu_mineral(m, i);
}
}
}
void AdimensionalSystem::set_secondary_variables(const Vector& x)
{
set_saturation_gas_phase(x);
set_pressure_fugacity(x);
set_secondary_concentration(x);
compute_log_gamma(x);
}
void AdimensionalSystem::set_saturation_gas_phase(const Vector& x)
{
m_saturation_gas = 1 - saturation_water(x) - sum_saturation_minerals(x) - m_inert_volume_fraction;
}
void AdimensionalSystem::set_pressure_fugacity(const Vector& x)
{
for (index_t k: m_data->range_gas())
{
if (not is_active_gas(k)) continue;
scalar_t logp = -m_data->logk_gas(k);
for (index_t i: m_data->range_aqueous_component())
{
if (m_data->nu_gas(k, i) == 0.0) continue;
logp += m_data->nu_gas(k, i) * (log_component_molality(x, i) + log_gamma_component(i));
}
m_gas_fugacity(k) = pow10(logp);
}
}
void AdimensionalSystem::set_secondary_concentration(const Vector& x)
{
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j))
{
m_secondary_conc(j) = 0;
continue;
}
scalar_t logconc = -m_data->logk_aqueous(j) - m_loggamma(j+m_data->nb_component);
for (index_t k: m_data->range_aqueous_component())
{
if (m_data->nu_aqueous(j, k) == 0) continue;
logconc += m_data->nu_aqueous(j, k)*(log_component_molality(x, k) + m_loggamma(k));
}
m_secondary_conc(j) = pow10(logconc);
}
}
void AdimensionalSystem::set_ionic_strength(const Vector& x)
{
scalar_t ionic = 0;
for (index_t i: m_data->range_aqueous_component())
{
if (ideq_paq(i) == no_equation or m_data->charge_component(i) == 0) continue;
ionic += component_molality(x, i)*std::pow(m_data->charge_component(i),2);
}
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j) or m_data->charge_aqueous(j) == 0) continue;
ionic += secondary_molality(j)*std::pow(m_data->charge_aqueous(j),2);
}
ionic_strength() = ionic/2;
}
void AdimensionalSystem::compute_log_gamma(const Vector& x)
{
set_ionic_strength(x);
const scalar_t sqrti = std::sqrt(ionic_strength());
for (index_t i: m_data->range_aqueous_component())
{
if (ideq_paq(i) == no_equation)
{
log_gamma_component(i) = 0.0;
continue;
}
log_gamma_component(i) = laws::extended_debye_huckel(
ionic_strength(), sqrti,
m_data->charge_component(i),
m_data->a_debye_component(i),
m_data->b_debye_component(i)
);
}
for (index_t j: m_data->range_aqueous())
{
if (not is_aqueous_active(j))
{
log_gamma_secondary(j) = 0.0;
continue;
}
log_gamma_secondary(j) = laws::extended_debye_huckel(
ionic_strength(), sqrti,
m_data->charge_aqueous(j),
m_data->a_debye_aqueous(j),
m_data->b_debye_aqueous(j)
);
}
}
bool AdimensionalSystem::hook_start_iteration(const Vector& x, scalar_t norm_residual)
{
if (not get_options().non_ideality) return true;
not_in_linesearch = true;
scalar_t previous_norm = m_loggamma.norm();
bool may_have_converged = false;
if (norm_residual < nb_free_variables()*get_options().start_non_ideality_computation)
{
// Use fixed point iterations for non-ideality
for (int i=0; i<get_options().non_ideality_max_iter; ++i)
{
set_secondary_variables(x);
compute_log_gamma(x);
// convergence check
if (std::abs(previous_norm - m_loggamma.norm())/previous_norm <
get_options().non_ideality_tolerance) {
may_have_converged = true;
break;
}
previous_norm = m_loggamma.norm();
}
}
return may_have_converged;
}
double AdimensionalSystem::max_lambda(const Vector& x, const Vector& update)
{
if (ideq_w() != no_equation)
{
return 1.0/std::max(1.0, -update(0)/(get_options().under_relaxation_factor*x(0)));
}
else
{
return 1.0;
}
}
void AdimensionalSystem::reasonable_starting_guess(Vector &x)
{
x.resize(m_data->nb_component+ m_data->nb_mineral);
x(0) = 1.0;
for (index_t i: m_data->range_aqueous_component())
{
x(i) = -4.0;
}
x.block(m_data->nb_component, 0, m_data->nb_mineral, 1).setZero();
m_loggamma.setZero();
m_secondary_conc.setZero();
}
void AdimensionalSystem::reasonable_restarting_guess(Vector& x)
{
x(0) = 0.5;
for (index_t i: m_data->range_aqueous_component())
{
if (x(i) > 0 or x(i) < -9)
x(i) = get_options().restart_concentration;
}
x.segment(m_data->nb_component, m_data->nb_mineral).setZero();
m_loggamma.setZero();
m_secondary_conc.setZero();
}
AdimensionalSystemSolution AdimensionalSystem::get_solution(Vector& xtot, const Vector& x)
{
double previous_norm = m_loggamma.norm();
set_saturation_gas_phase(x);
set_pressure_fugacity(x);
set_secondary_concentration(x);
if (get_options().non_ideality)
{
compute_log_gamma(x);
if (std::abs(previous_norm - m_loggamma.norm()) > 1e-6)
{
WARNING << "Activity coefficient have not converged !" << std::endl
<< "output can not be trusted\n Difference : "
+std::to_string(std::abs(previous_norm - m_loggamma.norm()));
}
}
// Set the correct value for the water total saturation
if (ideq_w() == no_equation)
xtot(0) = saturation_water(x);
return AdimensionalSystemSolution(xtot,
m_secondary_conc, m_loggamma, m_ionic_strength,
m_gas_fugacity,
m_inert_volume_fraction);
}
} // end namespace specmicp

Event Timeline