Page MenuHomec4science

reduced_system.cpp
No OneTemporary

File Metadata

Created
Wed, Jun 5, 20:18

reduced_system.cpp

/*-------------------------------------------------------
- Module : specmicp
- File : specmicp.cpp
- Author : Fabien Georget
Copyright (c) 2014, Fabien Georget <fabieng@princeton.edu>, Princeton University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Princeton University nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------*/
#include <iostream>
#include "reduced_system.hpp"
#include "utils/log.hpp"
#include "equilibrium_data.hpp"
#include "physics/constants.hpp"
#include "physics/laws.hpp"
namespace specmicp {
inline double pow10(double x)
{
return std::pow(10.0, x);
}
ReducedSystem::ReducedSystem(std::shared_ptr<database::DataContainer> ptrdata,
const Eigen::VectorXd& totconc):
m_data(ptrdata),
m_tot_conc(totconc),
m_secondary_conc(ptrdata->nb_aqueous),
m_loggamma(ptrdata->nb_component+ptrdata->nb_aqueous)
{
if (not m_simulbox.is_fixed_temperature() or m_simulbox.get_temperature() != units::celsius(25))
{
throw std::runtime_error("Only a fixed temperature of 25°C is supported");
}
number_eq(true);
m_secondary_conc.setZero();
m_loggamma.setZero();
}
ReducedSystem::ReducedSystem(std::shared_ptr<database::DataContainer> ptrdata,
const Eigen::VectorXd& totconc,
const SimulationBox &simul_box):
m_simulbox(simul_box),
m_data(ptrdata),
m_tot_conc(totconc),
m_secondary_conc(ptrdata->nb_aqueous),
m_loggamma(ptrdata->nb_component+ptrdata->nb_aqueous)
{
if (not m_simulbox.is_fixed_temperature() or m_simulbox.get_temperature() != units::celsius(25))
{
throw std::runtime_error("Only a fixed temperature of 25°C is supported");
}
number_eq(true);
m_secondary_conc.setZero();
m_loggamma.setZero();
}
ReducedSystem::ReducedSystem(std::shared_ptr<database::DataContainer> ptrdata,
const Eigen::VectorXd& totconc,
const SimulationBox& simul_box,
const EquilibriumState& previous_solution):
m_simulbox(simul_box),
m_data(ptrdata),
m_tot_conc(totconc),
m_secondary_conc(previous_solution.molality_secondary()),
m_loggamma(previous_solution.activity_coefficient())
{
if (not m_simulbox.is_fixed_temperature() or m_simulbox.get_temperature() != units::celsius(25))
{
throw std::runtime_error("Only a fixed temperature of 25°C is supported");
}
number_eq(true);
}
void ReducedSystem::number_eq(bool water_equation)
{
int neq = 0;
m_ideq.reserve(m_data->nb_component+m_data->nb_mineral);
if (water_equation)
{
m_ideq.push_back(neq);
++neq;
} else {
m_ideq.push_back(no_equation);
}
for (int i=1;i<m_data->nb_component;++i)
{
// Remove components that does not exist
if (m_tot_conc(i) == 0 and i!= 1)
{
INFO << "Component " << m_data->labels_basis[i]
<< "has total concentration equal to zero, we desactivate it" << std::endl;
m_nonactive_component.push_back(i);
m_ideq.push_back(no_equation);
continue;
}
else
{
m_ideq.push_back(neq);
++neq;
}
}
m_nb_free_vars = neq;
for (int m=0; m<m_data->nb_mineral;++m)
{
bool can_precipitate = true;
// Remove minerals that cannot precipitate
for (auto it=m_nonactive_component.begin(); it!=m_nonactive_component.end(); ++it)
{
if (m_data->nu_mineral(m, *it) != 0)
{
can_precipitate = false;
break; // this is not a mineral that can precipitate
}
}
if (can_precipitate)
{
m_ideq.push_back(neq);
++neq;
}
else
{
m_ideq.push_back(no_equation);
}
}
m_nb_tot_vars = neq;
m_nb_compl_vars = m_nb_tot_vars - m_nb_free_vars;
// aqueous species
m_active_aqueous.reserve(m_data->nb_aqueous);
for (int j=0; j<m_data->nb_aqueous; ++j)
{
bool can_exist = true;
for (auto it=m_nonactive_component.begin(); it!=m_nonactive_component.end(); ++it)
{
if (m_data->nu_aqueous(j,*it) != 0)
{
can_exist = false;
}
}
m_active_aqueous.push_back(can_exist);
}
}
double ReducedSystem::residual_water(const Eigen::VectorXd& x) const
{
double res = m_tot_conc(0) - mass_water(x)/m_data->molar_mass_basis_si(0);
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if (m_data->nu_aqueous(j, 0) == 0) continue;
res -= mass_water(x)*m_data->nu_aqueous(j, 0)*m_secondary_conc(j);
}
for (int m=0; m<m_data->nb_mineral; ++m)
{
if (ideq_min(m) == no_equation or m_data->nu_mineral(m, 0) == 0) continue;
res -= m_data->nu_mineral(m, 0)*x(ideq_min(m));
}
return res;
}
double ReducedSystem::residual_component(const Eigen::VectorXd& x, int i) const
{
const int idp = ideq_paq(i);
double res = m_tot_conc(i) - mass_water(x)*pow10(x(idp));
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if (not m_active_aqueous[j]) continue;
res -= mass_water(x)*m_data->nu_aqueous(j, i)*m_secondary_conc(j);
}
for (int m=0; m<m_data->nb_mineral; ++m)
{
if (ideq_min(m) == no_equation) continue;
res -= m_data->nu_mineral(m, i)*x(ideq_min(m));
}
return res;
}
double ReducedSystem::residual_mineral(const Eigen::VectorXd& x, int m) const
{
double res = m_data->logk_mineral(m);
for (int i=1; i<m_data->nb_component; ++i)
{
if (m_data->nu_mineral(m, i) != 0)
res -= m_data->nu_mineral(m, i)*(x(ideq_paq(i)) + m_loggamma(i));
}
return res;
}
void ReducedSystem::get_residuals(const Eigen::VectorXd& x,
Eigen::VectorXd& residual)
{
set_secondary_concentration(x);
if (ideq_w() != no_equation) residual(ideq_w()) = residual_water(x);
for (int i=1; i<m_data->nb_component; ++i)
{
if (ideq_paq(i) != no_equation) residual(ideq_paq(i)) = residual_component(x, i);
}
for (int m=0; m<m_data->nb_mineral; ++m)
{
if (ideq_min(m) != no_equation) residual(ideq_min(m)) = residual_mineral(x, m);
}
}
//non-optimized Finite difference, for test only
//void ReducedSystem::get_jacobian(Eigen::VectorXd& x,
// Eigen::MatrixXd& jacobian)
//{
// const int neq = total_variables();
// Eigen::VectorXd res(total_variables());
// Eigen::VectorXd perturbed_res(total_variables());
// get_residuals(x, res);
// for (int j=0; j<neq; ++j)
// {
// double h = 1e-8*std::abs(x(j));
// //h = std::copysign(h, x(j));
// if (h==0) h = 1e-8;
// double tmp = x(j);
// x(j) += h;
// h = x(j) - tmp;
// get_residuals(x, perturbed_res);
// for (int i=0; i<neq; ++i)
// {
// jacobian(i, j) = (perturbed_res(i) - res(i))/h;
// }
// x(j) = tmp;
// }
// std::cout << jacobian << std::endl;
// return;
//}
void ReducedSystem::get_jacobian(Eigen::VectorXd& x,
Eigen::MatrixXd& jacobian)
{
const double log10 = std::log(10.0);
jacobian.resize(total_variables(), total_variables());
jacobian.setZero();
// water
if (ideq_w() != no_equation)
{
double tmp = -1/m_data->molar_mass_basis_si(0);
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if ( m_data->nu_aqueous(j, 0) == 0 ) continue;
tmp -= m_data->nu_aqueous(j, 0)*m_secondary_conc(j);
}
jacobian(0, 0) = tmp;
for (int k=1; k<m_data->nb_component; ++k)
{
if (ideq_paq(k) == no_equation) continue;
double tmp = 0;
for (int j=0; j<m_data->nb_aqueous; ++j)
{
tmp -= m_data->nu_aqueous(j,0)*m_data->nu_aqueous(j,k)*m_secondary_conc(j);
}
jacobian(0, ideq_paq(k)) = x(ideq_w())*log10 * tmp;
}
for (int m=0; m<m_data->nb_mineral; ++m)
{
if (ideq_min(m) == no_equation) continue;
jacobian(0, ideq_min(m)) = -m_data->nu_mineral(m, 0);
}
}
// aqueous component
for (int i=1; i<m_data->nb_component; ++i)
{
if (ideq_paq(i) == no_equation) continue;
const int idp = ideq_paq(i);
// aqueous components
for (int k=1; k<m_data->nb_component; ++k)
{
if (ideq_paq(k) == no_equation) continue;
double tmp_iip = 0;
if (k == i) tmp_iip -= pow10(x(ideq_paq(i)))*log10;
for (int j=0; j<m_data->nb_aqueous; ++j)
{
tmp_iip -= log10*m_data->nu_aqueous(j, i)*m_data->nu_aqueous(j, k)*m_secondary_conc(j);
}
jacobian(idp, ideq_paq(k)) = mass_water(x)*tmp_iip;
}
// minerals
for (int m=0; m<m_data->nb_mineral; ++m)
{
if (ideq_min(m) == no_equation) continue;
jacobian(idp, ideq_min(m)) = - m_data->nu_mineral(m, i);
}
if (ideq_w() != no_equation) // Water
{
double tmp_iw = -std::pow(10.0, x(idp));
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if ( m_data->nu_aqueous(j, i) == 0 ) continue;
tmp_iw -= m_data->nu_aqueous(j, i)*m_secondary_conc(j);
}
jacobian(idp, ideq_w()) = tmp_iw;
}
}
// mineral equilibrium
for (int m=0; m<m_data->nb_mineral; ++m)
{
const int idm = ideq_min(m);
if (idm == no_equation) continue;
for (int i=1; i<m_data->nb_component; ++i)
{
if (ideq_paq(i) == no_equation) continue;
jacobian(idm, ideq_paq(i)) = -m_data->nu_mineral(m, i);
}
}
}
void ReducedSystem::set_secondary_concentration(const Eigen::VectorXd& x)
{
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if (m_active_aqueous[j] == false)
{
m_secondary_conc(j) = 0;
continue;
}
double conc = -m_data->logk_aqueous(j) - m_loggamma(j+m_data->nb_component);
for (int k=1; k<m_data->nb_component; ++k)
{
if (m_data->nu_aqueous(j, k) == 0) continue;
conc += m_data->nu_aqueous(j, k)*(x(ideq_paq(k)) + m_loggamma(k));
}
m_secondary_conc(j) = pow10(conc);
}
}
void ReducedSystem::set_ionic_strength(const Eigen::VectorXd& x)
{
double ionic = 0;
for (int i=1; i<m_data->nb_component; ++i)
{
if (ideq_paq(i) == no_equation or m_data->charge_component(i) == 0) continue;
ionic += pow10(x(ideq_paq(i)))*std::pow(m_data->charge_component(i),2);
}
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if (not m_active_aqueous[j] or m_data->charge_aqueous(j) == 0) continue;
ionic += m_secondary_conc(j)*std::pow(m_data->charge_aqueous(j),2);
}
m_ionic_strength = ionic;
}
void ReducedSystem::compute_log_gamma(const Eigen::VectorXd& x)
{
set_ionic_strength(x);
const double sqrti = std::sqrt(m_ionic_strength);
for (int i=0; i<m_data->nb_component; ++i)
{
if (ideq_paq(i) == no_equation)
{
m_loggamma(i) = 0;
continue;
}
m_loggamma(i) = laws::extended_debye_huckel(m_ionic_strength, sqrti,
m_data->charge_component(i),
m_data->a_debye_component(i),
m_data->b_debye_component(i));
}
for (int j=0; j<m_data->nb_aqueous; ++j)
{
if (not m_active_aqueous[j])
{
m_loggamma(m_data->nb_component + j) = 0;
continue;
}
m_loggamma(m_data->nb_component + j) = laws::extended_debye_huckel(
m_ionic_strength, sqrti,
m_data->charge_aqueous(j),
m_data->a_debye_aqueous(j),
m_data->b_debye_aqueous(j));
}
}
bool ReducedSystem::hook_start_iteration(const Eigen::VectorXd& x, double norm_residual) {
not_in_linesearch = true;
double previous_norm = m_loggamma.norm();
bool may_have_converged = false;
if (norm_residual < nb_free_variables())
{
// Use fix point iterations for non-ideality
for (int i=0; i<6; ++i)
{
set_secondary_concentration(x);
compute_log_gamma(x);
if (std::abs(previous_norm - m_loggamma.norm()) < 1e-6) {may_have_converged = true; break;}
previous_norm = m_loggamma.norm();
}
}
return may_have_converged;
}
double ReducedSystem::max_lambda(const Eigen::VectorXd& x, const Eigen::VectorXd& update)
{
if (ideq_w() != no_equation)
{
return 1.0/std::max(1.0, -update(0)/(0.9*x(0)));
}
else
{
return 1.0;
}
}
void ReducedSystem::reasonable_starting_guess(Eigen::VectorXd& x, bool for_min)
{
x.resize(m_data->nb_component+ m_data->nb_mineral);
x(0) = 2*m_tot_conc(0)*m_data->molar_mass_basis_si(0);
for (int i=1; i<m_data->nb_component; ++i)
{
x(i) = -4.0;
}
if (for_min)
x.block(m_data->nb_component, 0, m_data->nb_mineral, 1).setZero();
else
x.block(m_data->nb_component, 0, m_data->nb_mineral, 1).setZero();
m_loggamma.setZero();
m_secondary_conc.setZero();
}
void ReducedSystem::reasonable_restarting_guess(Eigen::VectorXd& x)
{
x(0) = m_tot_conc(0)*m_data->molar_mass_basis_si(0);
for (int i=m_data->nb_component; i<m_data->nb_component+m_data->nb_mineral; ++i)
{
x(i) = 0.0;
}
m_loggamma.setZero();
m_secondary_conc.setZero();
}
EquilibriumState ReducedSystem::get_solution(const Eigen::VectorXd &xtot, const Eigen::VectorXd& x)
{
double previous_norm = m_loggamma.norm();
set_secondary_concentration(x);
compute_log_gamma(x);
if (std::abs(previous_norm - m_loggamma.norm()) > 1e-6)
{
WARNING << "Activity coefficient have not converged !" << std::endl
<< "output can not be trusted\n Difference "+std::to_string(std::abs(previous_norm - m_loggamma.norm()));
}
return EquilibriumState(xtot, m_secondary_conc,
m_loggamma, m_ionic_strength,
m_data);
}
} // end namespace specmicp

Event Timeline