Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91130322
acc_carbo.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 05:29
Size
20 KB
Mime Type
text/x-c++
Expires
Sun, Nov 10, 05:29 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22193945
Attached To
rSPECMICP SpecMiCP / ReactMiCP
acc_carbo.cpp
View Options
/* =============================================================================
Copyright (c) 2014 - 2016
F. Georget <fabieng@princeton.edu> Princeton University
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
============================================================================= */
//! \file acc_carbo.cpp
//! \brief Accelerated carbonation example
//!
//! This is an example to show the features of the unsaturated
//! reactive transport solver
//! It is a simple study of the accelerated carbonation of cement paste
//! (with drying)
//!
//!
#include "reactmicp/reactmicp_unsaturated.hpp"
#include "reactmicp/systems/unsaturated/variables.hpp"
#include "reactmicp/io/hdf5_unsaturated.hpp"
#include "dfpm/io/hdf5_mesh.hpp"
#include "specmicp_database/io/hdf5_database.hpp"
#include "dfpm/solver/parabolic_structs.hpp"
#include "specmicp_common/physics/unsaturated_laws.hpp"
#include "specmicp_common/cli/parser.hpp"
#include <Eigen/QR>
#include <iostream>
using
namespace
specmicp
;
using
namespace
specmicp
::
reactmicp
;
using
namespace
specmicp
::
reactmicp
::
systems
::
unsaturated
;
using
VariablesBase
=
solver
::
VariablesBase
;
using
StaggerReturnCode
=
solver
::
StaggerReturnCode
;
class
UpscalingStagger
;
database
::
RawDatabasePtr
get_database
();
AdimensionalSystemSolution
get_initial_condition
(
database
::
RawDatabasePtr
the_database
,
const
units
::
UnitsSet
&
units_set
);
void
compo_from_oxyde
(
Vector
&
compo_oxyde
,
Vector
&
compo_species
);
// Upscaling stagger -> user models
class
UpscalingStagger
:
public
solver
::
UpscalingStaggerBase
{
public
:
UpscalingStagger
()
{}
~
UpscalingStagger
()
{}
//! \brief Initialize the stagger at the beginning of the computation
//!
//! \param var a shared_ptr to the variables
virtual
void
initialize
(
VariablesBase
*
const
var
)
override
;
//! \brief Initialize the stagger at the beginning of an iteration
//!
//! This is where the predictor can be saved, the first trivial iteration done, ...
//!
//! \param dt the duration of the timestep
//! \param var a shared_ptr to the variables
virtual
void
initialize_timestep
(
scalar_t
dt
,
VariablesBase
*
const
var
)
override
;
//! \brief Solve the equation for the timestep
//!
//! \param var a shared_ptr to the variables
virtual
StaggerReturnCode
restart_timestep
(
VariablesBase
*
const
var
)
override
;
// User models
scalar_t
capillary_pressure
(
index_t
node
,
scalar_t
saturation
);
scalar_t
vapor_pressure
(
index_t
node
,
scalar_t
saturation
);
scalar_t
relative_liquid_diffusivity
(
index_t
node
,
scalar_t
saturation
);
scalar_t
relative_liquid_permeability
(
index_t
node
,
scalar_t
saturation
);
scalar_t
relative_gas_diffusivity
(
index_t
node
,
scalar_t
saturation
);
scalar_t
intrinsic_permeability
(
scalar_t
porosity
);
scalar_t
intrinsic_liquid_diffusivity
(
scalar_t
porosity
);
scalar_t
resistance_gas_diffusivity
(
scalar_t
porosity
);
private
:
scalar_t
m_a
{
37.5479e6
};
scalar_t
m_b
{
2.1684
};
scalar_t
m_alpha
{
7.27
};
scalar_t
m_beta
{
0.440
};
scalar_t
m_pv_sat
{
3170
};
scalar_t
m_exp_r_l_d
{
3.00
};
scalar_t
m_exp_i_g_d
{
2.74
};
scalar_t
m_exp_r_g_d
{
4.20
};
scalar_t
m_exp_r_l_k
{
0.4191
};
scalar_t
m_k_0
{
1e-21
*
1e4
};
scalar_t
m_d_0
{
2.3e-13
*
1e4
};
scalar_t
m_phi_0
{
0.2
};
};
// implementations
int
main
(
int
argc
,
char
*
argv
[])
{
cli
::
CommandLineParser
cli_parser
;
cli_parser
.
add_option
(
'n'
,
"min_dt"
,
0.01
,
"minimum timestep (s)"
);
cli_parser
.
add_option
(
'm'
,
"max_dt"
,
10.0
,
"maximum timestep (s)"
);
cli_parser
.
add_option
(
'd'
,
"dx"
,
0.05
,
"space step (cm)"
);
cli_parser
.
add_option
(
'r'
,
"run_until"
,
10.0
*
24.0
*
3600.0
,
"run simulation until <value> s"
);
cli_parser
.
add_option
(
'p'
,
"p_h20"
,
1000.0
,
"vapor pressure at the boundary"
);
cli_parser
.
add_option
(
'c'
,
"p_co2"
,
500.0
,
"vapor pressure at the boundary"
);
cli_parser
.
set_help_message
(
"Atmospheric carbonation"
);
cli_parser
.
parse
(
argc
,
argv
);
init_logger
(
&
std
::
cout
,
logger
::
Warning
);
index_t
nb_nodes
=
25
;
scalar_t
dx
=
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"dx"
);
// cm
scalar_t
cross_section
=
5
;
// cm^2
units
::
UnitsSet
units_set
;
units_set
.
length
=
units
::
LengthUnit
::
centimeter
;
specmicp
::
RawDatabasePtr
the_database
=
get_database
();
AdimensionalSystemSolution
init
=
get_initial_condition
(
the_database
,
units_set
);
AdimensionalSystemSolutionExtractor
extr
(
init
,
the_database
,
units_set
);
std
::
cout
<<
extr
.
porosity
()
<<
" - "
<<
extr
.
saturation_water
()
<<
std
::
endl
;
//return EXIT_SUCCESS;
mesh
::
Mesh1DPtr
the_mesh
=
mesh
::
uniform_mesh1d
({
dx
,
nb_nodes
,
cross_section
});
index_t
id_co2
=
the_database
->
get_id_component
(
"CO2"
);
VariablesInterface
variable_interface
(
the_mesh
,
the_database
,
{
0
,
id_co2
},
units_set
);
variable_interface
.
set_binary_gas_diffusivity
(
0
,
0.240
);
variable_interface
.
set_binary_gas_diffusivity
(
id_co2
,
0.160
);
std
::
shared_ptr
<
UpscalingStagger
>
upscaling_stagger
=
std
::
make_shared
<
UpscalingStagger
>
();
auto
*
call_ptr
=
upscaling_stagger
.
get
();
variable_interface
.
set_vapor_pressure_model
(
[
call_ptr
](
index_t
node
,
scalar_t
sat
)
->
scalar_t
{
return
call_ptr
->
vapor_pressure
(
node
,
sat
);
});
for
(
index_t
node
=
1
;
node
<
the_mesh
->
nb_nodes
();
++
node
)
{
variable_interface
.
initialize_variables
(
node
,
extr
);
}
variable_interface
.
set_porosity
(
0
,
1.0
);
variable_interface
.
set_liquid_saturation
(
0
,
0.0
);
variable_interface
.
set_partial_pressure
(
id_co2
,
0
,
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"p_co2"
));
variable_interface
.
set_partial_pressure
(
0
,
0
,
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"p_h20"
));
std
::
shared_ptr
<
UnsaturatedVariables
>
vars
=
variable_interface
.
get_variables
();
vars
->
set_aqueous_scaling
(
0
,
1.0e3
/
18.3e-3
*
1e-6
);
for
(
auto
aqc:
the_database
->
range_aqueous_component
())
{
vars
->
set_aqueous_scaling
(
aqc
,
100e-6
);
}
//vars->set_gaseous_scaling(0, 1.0/vars->get_rt());
//vars->set_gaseous_scaling(id_co2, 1.0/vars->get_rt());
std
::
cout
<<
"Youpla : "
<<
vars
->
get_rt
()
<<
std
::
endl
;
auto
bcs
=
BoundaryConditions
::
make
(
the_mesh
->
nb_nodes
(),
the_database
->
nb_component
());
bcs
->
add_gas_node
(
0
);
bcs
->
fork_constraint
(
0
,
"gas_node"
);
auto
chem_options
=
EquilibriumOptionsVector
::
make
(
the_mesh
->
nb_nodes
());
auto
&
def_chem_opts
=
chem_options
->
get
(
"default"
);
def_chem_opts
.
units_set
=
units_set
;
micpsolver
::
MiCPSolverOptions
&
copts
=
def_chem_opts
.
solver_options
;
copts
.
set_maximum_iterations
(
200
);
copts
.
set_maximum_step_length
(
10
,
200
);
copts
.
set_tolerance
(
1e-8
,
1e-12
);
def_chem_opts
.
system_options
.
non_ideality_tolerance
=
1e-14
;
std
::
shared_ptr
<
EquilibriumStagger
>
chemistry_stagger
=
EquilibriumStagger
::
make
(
vars
,
bcs
,
chem_options
);
upscaling_stagger
->
initialize
(
vars
.
get
());
vars
->
set_relative_variables
(
0
);
chemistry_stagger
->
initialize
(
vars
.
get
());
std
::
shared_ptr
<
UnsaturatedTransportStagger
>
transport_stagger
=
UnsaturatedTransportStagger
::
make
(
vars
,
bcs
);
transport_stagger
->
initialize
(
vars
.
get
());
bcs
->
get_constraint
(
"gas_node"
).
set_water_partial_pressure_model
(
std
::
bind
(
&
UpscalingStagger
::
vapor_pressure
,
upscaling_stagger
.
get
(),
1
,
std
::
placeholders
::
_1
)
);
auto
check
=
variable_interface
.
check_variables
();
if
(
check
>=
VariablesValidity
::
error
)
{
std
::
cout
<<
variable_interface
.
get_liquid_saturation
()
<<
std
::
endl
;
throw
std
::
runtime_error
(
"Invalid variables"
);
}
solver
::
ReactiveTransportSolver
react_solver
(
transport_stagger
,
chemistry_stagger
,
upscaling_stagger
);
solver
::
ReactiveTransportOptions
&
opts
=
react_solver
.
get_options
();
opts
.
residuals_tolerance
=
1e-2
;
opts
.
good_enough_tolerance
=
0.99
;
opts
.
maximum_iterations
=
100
;
transport_stagger
->
get_saturation_options
()
->
maximum_iterations
=
500
;
transport_stagger
->
get_saturation_options
()
->
step_tolerance
=
1e-10
;
transport_stagger
->
get_saturation_options
()
->
residuals_tolerance
=
1e-8
;
for
(
auto
ind:
the_database
->
range_aqueous_component
())
{
auto
*
opts
=
transport_stagger
->
get_aqueous_options
(
ind
);
opts
->
step_tolerance
=
1e-10
;
opts
->
residuals_tolerance
=
1e-8
;
}
//transport_stagger->get_gas_options(3)->maximum_iterations = 5000;
opts
.
step_tolerance
=
1e-10
;
io
::
UnsaturatedHDF5Saver
saver
(
"/tmp/out_acc_carbo.hdf5"
,
vars
,
units_set
);
saver
.
save_timestep
(
0.0
);
solver
::
SimulationInformation
simul_info
(
"acc_carbo"
,
500
);
auto
out_pol
=
[
&
saver
](
scalar_t
timestep
,
solver
::
VariablesBasePtr
_
)
{
saver
.
save_timestep
(
timestep
);
};
database
::
Database
db_handler
(
the_database
);
db_handler
.
save
(
"acc_carbo_data.yml"
);
//solver::ReactiveTransportReturnCode retcode = react_solver.solve_timestep(0.01, vars);
//retcode = react_solver.solve_timestep(1.0, vars);
//std::cout << (int) retcode << std::endl;
// retcode = react_solver.solve_timestep(5.0, vars);
// std::cout << (int) retcode << std::endl;
// retcode = react_solver.solve_timestep(10.0, vars);
// std::cout << (int) retcode << std::endl;
// retcode = react_solver.solve_timestep(10.0, vars);
// std::cout << (int) retcode << std::endl;
solver
::
ReactiveTransportRunner
runner
(
react_solver
,
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"min_dt"
),
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"max_dt"
),
simul_info
);
runner
.
set_output_policy
(
out_pol
);
runner
.
run_until
(
cli_parser
.
get_option
<
cli
::
ValueType
::
floating
>
(
"run_until"
),
vars
);
std
::
cout
<<
vars
->
get_liquid_saturation
().
variable
<<
std
::
endl
;
std
::
cout
<<
vars
->
get_liquid_saturation
()(
1
)
-
vars
->
get_liquid_saturation
()(
2
)
<<
std
::
endl
;
std
::
cout
<<
vars
->
get_pressure_main_variables
(
id_co2
).
variable
<<
std
::
endl
;
}
void
UpscalingStagger
::
initialize
(
VariablesBase
*
const
var
)
{
UnsaturatedVariables
*
const
true_var
=
static_cast
<
UnsaturatedVariables
*
const
>
(
var
);
// set relative models
true_var
->
set_capillary_pressure_model
(
[
this
](
index_t
x
,
scalar_t
sat
){
return
this
->
capillary_pressure
(
x
,
sat
);
});
true_var
->
set_relative_liquid_permeability_model
(
[
this
](
index_t
x
,
scalar_t
sat
){
return
this
->
relative_liquid_permeability
(
x
,
sat
);
});
true_var
->
set_relative_liquid_diffusivity_model
(
[
this
](
index_t
x
,
scalar_t
sat
){
return
this
->
relative_liquid_diffusivity
(
x
,
sat
);
});
true_var
->
set_relative_gas_diffusivity_model
(
[
this
](
index_t
x
,
scalar_t
sat
){
return
this
->
relative_gas_diffusivity
(
x
,
sat
);
});
true_var
->
set_vapor_pressure_model
(
[
this
](
index_t
x
,
scalar_t
sat
){
return
this
->
vapor_pressure
(
x
,
sat
);
});
// initialization
SecondaryTransientVariable
&
porosity
=
true_var
->
get_porosity
();
SecondaryVariable
&
permeability
=
true_var
->
get_liquid_permeability
();
SecondaryVariable
&
liq_diffusivity
=
true_var
->
get_liquid_diffusivity
();
SecondaryVariable
&
gas_diffusivity
=
true_var
->
get_resistance_gas_diffusivity
();
true_var
->
set_relative_variables
();
gas_diffusivity
(
0
)
=
resistance_gas_diffusivity
(
1.0
);
true_var
->
get_relative_gas_diffusivity
()(
0
)
=
relative_gas_diffusivity
(
0
,
1.0
);
for
(
index_t
node
=
1
;
node
<
true_var
->
get_mesh
()
->
nb_nodes
();
++
node
)
{
scalar_t
phi
=
porosity
(
node
);
permeability
(
node
)
=
intrinsic_permeability
(
phi
);
liq_diffusivity
(
node
)
=
intrinsic_liquid_diffusivity
(
phi
);
gas_diffusivity
(
node
)
=
resistance_gas_diffusivity
(
phi
);
//true_var->set_relative_variables(node);
}
}
scalar_t
UpscalingStagger
::
capillary_pressure
(
index_t
node
,
scalar_t
saturation
)
{
if
(
saturation
==
0.0
)
return
0.0
;
return
laws
::
capillary_pressure_BaroghelBouny
(
saturation
,
m_a
,
m_b
);
}
scalar_t
UpscalingStagger
::
vapor_pressure
(
index_t
node
,
scalar_t
saturation
)
{
scalar_t
pv
;
if
(
saturation
==
0.0
)
pv
=
0.0
;
else
if
(
saturation
>=
1.0
)
pv
=
m_pv_sat
;
else
pv
=
m_pv_sat
*
laws
::
invert_kelvin_equation
(
capillary_pressure
(
node
,
saturation
));
return
pv
;
}
scalar_t
UpscalingStagger
::
relative_liquid_diffusivity
(
index_t
node
,
scalar_t
saturation
)
{
if
(
saturation
==
0.0
)
return
0.0
;
return
std
::
pow
(
saturation
,
m_exp_r_l_d
);
}
scalar_t
UpscalingStagger
::
relative_liquid_permeability
(
index_t
node
,
scalar_t
saturation
)
{
if
(
saturation
==
0.0
)
return
0.0
;
return
laws
::
relative_liquid_permeability_Mualem
(
saturation
,
1.0
/
m_b
);
}
scalar_t
UpscalingStagger
::
relative_gas_diffusivity
(
index_t
node
,
scalar_t
saturation
)
{
if
(
saturation
==
0.0
)
return
1.0
;
return
std
::
pow
(
1.0
-
saturation
,
m_exp_r_g_d
);
}
scalar_t
UpscalingStagger
::
intrinsic_permeability
(
scalar_t
porosity
)
{
scalar_t
tmp_1
=
porosity
/
m_phi_0
;
scalar_t
tmp_2
=
(
1.0
-
m_phi_0
)
/
(
1.0
-
porosity
);
tmp_1
=
std
::
pow
(
tmp_1
,
3
);
tmp_2
=
std
::
pow
(
tmp_2
,
2
);
return
m_k_0
*
tmp_1
*
tmp_2
;
}
scalar_t
UpscalingStagger
::
intrinsic_liquid_diffusivity
(
scalar_t
porosity
)
{
return
m_d_0
*
std
::
exp
(
-
9.95
*
porosity
);
}
scalar_t
UpscalingStagger
::
resistance_gas_diffusivity
(
scalar_t
porosity
)
{
return
std
::
pow
(
porosity
,
m_exp_i_g_d
);
}
void
UpscalingStagger
::
initialize_timestep
(
scalar_t
dt
,
VariablesBase
*
const
var
)
{
}
StaggerReturnCode
UpscalingStagger
::
restart_timestep
(
VariablesBase
*
const
var
)
{
UnsaturatedVariables
*
true_var
=
static_cast
<
UnsaturatedVariables
*>
(
var
);
SecondaryTransientVariable
&
porosity
=
true_var
->
get_porosity
();
SecondaryVariable
&
permeability
=
true_var
->
get_liquid_permeability
();
SecondaryVariable
&
liq_diffusivity
=
true_var
->
get_liquid_diffusivity
();
SecondaryVariable
&
gas_diffusivity
=
true_var
->
get_resistance_gas_diffusivity
();
for
(
index_t
node
=
1
;
node
<
true_var
->
get_mesh
()
->
nb_nodes
();
++
node
)
{
scalar_t
phi
=
porosity
(
node
);
permeability
(
node
)
=
intrinsic_permeability
(
phi
);
liq_diffusivity
(
node
)
=
intrinsic_liquid_diffusivity
(
phi
);
gas_diffusivity
(
node
)
=
resistance_gas_diffusivity
(
phi
);
true_var
->
set_relative_variables
(
node
);
}
return
StaggerReturnCode
::
ResidualMinimized
;
}
specmicp
::
RawDatabasePtr
get_database
()
{
specmicp
::
database
::
Database
thedatabase
(
CEMDATA_PATH
);
std
::
map
<
std
::
string
,
std
::
string
>
swap
=
{{
"HCO3[-]"
,
"CO2"
},};
thedatabase
.
swap_components
(
swap
);
thedatabase
.
remove_half_cell_reactions
();
database
::
RawDatabasePtr
raw_data
=
thedatabase
.
get_database
();
return
raw_data
;
}
AdimensionalSystemSolution
get_initial_condition
(
database
::
RawDatabasePtr
the_database
,
const
units
::
UnitsSet
&
units_set
)
{
Vector
oxyde_compo
(
4
);
oxyde_compo
<<
67.98
,
22.66
,
5.19
,
2.96
;
Vector
species_compo
;
compo_from_oxyde
(
oxyde_compo
,
species_compo
);
scalar_t
mult
=
1e-6
;
//species_compo *= 0.947e-2; // poro 0.47
//species_compo *= 1.08e-2; // poro 0.4
species_compo
*=
1.25e-2
;
// poro 0.3
//species_compo *= 1.1e-2;
Formulation
formulation
;
formulation
.
mass_solution
=
5e-4
;
formulation
.
amount_minerals
=
{
{
"C3S"
,
species_compo
(
0
)},
{
"C2S"
,
species_compo
(
1
)},
{
"C3A"
,
species_compo
(
2
)},
{
"Gypsum"
,
species_compo
(
3
)},
{
"Calcite"
,
species_compo
(
0
)
*
1e-3
}
};
//formulation.extra_components_to_keep = {"HCO3[-]"};
formulation
.
concentration_aqueous
=
{
{
"NaOH"
,
mult
*
0.0298
},
{
"KOH"
,
mult
*
0.0801
},
{
"Cl[-]"
,
mult
*
0.0001
}
};
Dissolver
dissolver
(
the_database
);
UpscalingStagger
upsstag_init
;
// just for vapor pressure model
AdimensionalSystemConstraints
constraints
;
constraints
.
set_total_concentrations
(
dissolver
.
dissolve
(
formulation
,
true
)
);
//constraints.set_inert_volume_fraction(0.1);
AdimensionalSystemSolver
the_solver
(
the_database
,
constraints
);
the_solver
.
get_options
().
units_set
=
units_set
;
the_solver
.
get_options
().
system_options
.
non_ideality_tolerance
=
1e-12
;
micpsolver
::
MiCPSolverOptions
*
solver_options
=
&
the_solver
.
get_options
().
solver_options
;
//solver_options.maxstep = 10.0;
solver_options
->
maxiter_maxstep
=
200
;
solver_options
->
max_iter
=
200
;
solver_options
->
set_tolerance
(
1e-9
);
Vector
x
;
the_solver
.
initialize_variables
(
x
,
0.8
,
-
4
);
micpsolver
::
MiCPPerformance
perf
=
the_solver
.
solve
(
x
);
if
(
perf
.
return_code
<
micpsolver
::
MiCPSolverReturnCode
::
Success
)
{
throw
std
::
runtime_error
(
"Error : failed to solve initial conditions"
);
}
auto
prev_sol
=
the_solver
.
get_raw_solution
(
x
);
prev_sol
.
main_variables
(
0
)
*=
0.8
;
constraints
.
set_water_partial_pressure_model
(
std
::
bind
(
&
UpscalingStagger
::
vapor_pressure
,
&
upsstag_init
,
1
,
std
::
placeholders
::
_1
)
);
the_solver
=
AdimensionalSystemSolver
(
the_database
,
constraints
,
prev_sol
);
the_solver
.
get_options
().
units_set
=
units_set
;
the_solver
.
get_options
().
system_options
.
non_ideality_tolerance
=
1e-12
;
solver_options
=
&
the_solver
.
get_options
().
solver_options
;
//solver_options.maxstep = 10.0;
solver_options
->
maxiter_maxstep
=
200
;
solver_options
->
set_tolerance
(
1e-9
);
perf
=
the_solver
.
solve
(
x
);
if
(
perf
.
return_code
<
micpsolver
::
MiCPSolverReturnCode
::
Success
)
{
throw
std
::
runtime_error
(
"Error : failed to solve initial conditions"
);
}
return
the_solver
.
get_raw_solution
(
x
);
}
void
compo_from_oxyde
(
Vector
&
compo_oxyde
,
Vector
&
compo_species
)
{
constexpr
double
M_CaO
=
56.08
;
constexpr
double
M_SiO2
=
60.09
;
constexpr
double
M_Al2O3
=
101.96
;
constexpr
double
M_SO3
=
80.06
;
Eigen
::
MatrixXd
compo_in_oxyde
(
4
,
4
);
Vector
molar_mass
(
4
);
molar_mass
<<
1.0
/
M_CaO
,
1.0
/
M_SiO2
,
1.0
/
M_Al2O3
,
1.0
/
M_SO3
;
compo_oxyde
=
compo_oxyde
.
cwiseProduct
(
molar_mass
);
//C3S C2S C3A Gypsum
compo_in_oxyde
<<
3
,
2
,
3
,
1
,
// CaO
1
,
1
,
0
,
0
,
// SiO2
0
,
0
,
1
,
0
,
// Al2O3
0
,
0
,
0
,
1
;
// SO3
Eigen
::
ColPivHouseholderQR
<
Eigen
::
MatrixXd
>
solver
(
compo_in_oxyde
);
compo_species
=
solver
.
solve
(
compo_oxyde
);
}
Event Timeline
Log In to Comment