Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91498615
diffusion.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 16:52
Size
23 KB
Mime Type
text/x-c
Expires
Wed, Nov 13, 16:52 (2 d)
Engine
blob
Format
Raw Data
Handle
22272722
Attached To
rSPECMICP SpecMiCP / ReactMiCP
diffusion.cpp
View Options
/*-------------------------------------------------------
- Module : reactmicp/systems/diffusion
- File : diffusion.cpp
- Author : Fabien Georget
Copyright (c) 2014, Fabien Georget <fabieng@princeton.edu>, Princeton University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Princeton University nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------*/
#include "diffusion.hpp"
#include "physics/laws.hpp"
#include "utils/log.hpp"
#include <iostream>
#define EPS_J 1e-8
namespace
specmicp
{
namespace
reactmicp
{
namespace
systems
{
DiffusionProgram
::
DiffusionProgram
(
std
::
shared_ptr
<
mesh
::
Mesh1D
>
themesh
,
std
::
shared_ptr
<
database
::
DataContainer
>
thedatabase
,
std
::
shared_ptr
<
DiffusionParameter
>
parameters
,
diffusion
::
ListBoundaryCondition
&
list_bcs
,
const
EquilibriumState
&
initialstate
,
Variables
&
var
)
:
DiffusionProgram
(
themesh
,
thedatabase
,
parameters
,
list_bcs
,
var
)
{
initialize_no_bc_with_init
(
initialstate
,
var
);
}
// ================================== //
// //
// Residuals //
// //
// ================================== //
void
DiffusionProgram
::
get_residuals
(
const
Variables
&
variable
,
Vector
&
residual
)
{
m_is_micp
=
std
::
vector
<
bool
>
(
get_neq
(),
false
);
residual
=
Eigen
::
VectorXd
::
Zero
(
get_neq
());
residual_transport
(
variable
,
residual
);
residual_speciation
(
variable
,
residual
);
}
// Transport
// =========
void
DiffusionProgram
::
residual_transport
(
const
Variables
&
variable
,
Vector
&
residual
)
{
for
(
ind_t
element:
m_mesh
->
range_elements
())
{
element_residual_transport
(
element
,
variable
,
residual
);
}
}
void
DiffusionProgram
::
element_residual_transport_component
(
ind_t
element
,
int
component
,
const
Variables
&
variable
,
Vector
&
element_residual
)
{
Eigen
::
Matrix2d
mass
,
jacob
;
Eigen
::
Vector2d
velocity
,
displacement
;
double
mass_coeff
=
-
(
m_param
->
density_water
()
*
m_param
->
porosity
(
0
)
*
m_mesh
->
crosssection
()
*
m_mesh
->
get_dx
(
element
)
/
2
);
mass
<<
1
,
0
,
0
,
1
;
mass
*=
mass_coeff
;
double
flux_coeff
=
-
(
m_mesh
->
crosssection
()
/
m_mesh
->
get_dx
(
element
)
*
m_param
->
porosity
(
0
)
*
m_param
->
diffusion_coefficient
(
element
)
*
m_param
->
density_water
()
);
jacob
<<
1
,
-
1
,
-
1
,
1
;
jacob
*=
flux_coeff
;
velocity
<<
variable
.
velocity
(
m_ideq
.
get_dof_diffusion
(
m_mesh
->
get_node
(
element
,
0
),
component
)),
variable
.
velocity
(
m_ideq
.
get_dof_diffusion
(
m_mesh
->
get_node
(
element
,
1
),
component
));
displacement
<<
m_ideq
.
mobile_total_concentration
(
m_mesh
->
get_node
(
element
,
0
),
component
,
variable
),
m_ideq
.
mobile_total_concentration
(
m_mesh
->
get_node
(
element
,
1
),
component
,
variable
);
element_residual
=
mass
*
velocity
+
jacob
*
displacement
;
for
(
int
en:
m_mesh
->
range_nen
())
{
element_residual
(
en
)
+=
m_mesh
->
crosssection
()
*
m_mesh
->
get_dx
(
element
)
*
nodal_mineral_transient_term_transport
(
m_mesh
->
get_node
(
element
,
en
),
component
,
variable
)
/
2.0
;
}
}
void
DiffusionProgram
::
element_residual_transport
(
ind_t
element
,
const
Variables
&
variable
,
Vector
&
residual
)
{
Eigen
::
VectorXd
element_residual
(
2
);
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
element_residual_transport_component
(
element
,
component
,
variable
,
element_residual
);
for
(
int
en:
m_mesh
->
range_nen
())
{
const
ind_t
node
=
m_mesh
->
get_node
(
element
,
en
);
const
ind_t
id
=
m_ideq
.
id_equation_diffusion
(
node
,
component
);
if
(
id
!=
no_equation
)
{
residual
.
coeffRef
(
id
)
+=
element_residual
(
en
);}
}
}
}
double
DiffusionProgram
::
nodal_mineral_transient_term_transport
(
ind_t
node
,
ind_t
component
,
const
Variables
&
variable
)
{
double
mineral_term
=
0
;
for
(
ind_t
mineral:
m_data
->
range_mineral
())
{
if
(
m_data
->
nu_mineral
(
mineral
,
component
)
==
0
)
continue
;
mineral_term
-=
(
m_data
->
nu_mineral
(
mineral
,
component
)
*
variable
.
velocity
(
m_ideq
.
get_dof_mineral
(
node
,
mineral
))
);
}
return
mineral_term
;
}
// Speciation
// ==========
void
DiffusionProgram
::
residual_speciation
(
const
Variables
&
variable
,
Vector
&
residual
)
{
for
(
ind_t
node:
m_mesh
->
range_nodes
())
{
nodal_residual_massbalance
(
node
,
variable
,
residual
);
nodal_residual_mineral
(
node
,
variable
,
residual
);
}
}
void
DiffusionProgram
::
nodal_residual_massbalance
(
ind_t
node
,
const
Variables
&
variable
,
Vector
&
residual
)
{
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
ind_t
id
=
m_ideq
.
id_equation_massbalance
(
node
,
component
);
if
(
id
!=
no_equation
)
{
residual
(
id
)
+=
nodal_component_residual_massbalance
(
node
,
component
,
variable
);
}
}
}
double
DiffusionProgram
::
nodal_component_residual_massbalance
(
ind_t
node
,
int
component
,
const
Variables
&
variable
)
{
double
sum
=
pow10
(
m_ideq
.
component_concentration
(
node
,
component
,
variable
));
for
(
ind_t
aqueous:
m_data
->
range_aqueous
())
{
if
(
m_data
->
nu_aqueous
(
aqueous
,
component
)
!=
0
)
{
sum
+=
m_data
->
nu_aqueous
(
aqueous
,
component
)
*
m_second
.
secondary_concentration
(
node
,
aqueous
);
}
}
return
sum
-
m_ideq
.
mobile_total_concentration
(
node
,
component
,
variable
);
}
void
DiffusionProgram
::
nodal_residual_mineral
(
ind_t
node
,
const
Variables
&
variable
,
Vector
&
residual
)
{
for
(
ind_t
mineral:
m_data
->
range_mineral
())
{
ind_t
id
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
id
!=
no_equation
)
{
residual
(
id
)
=
nodal_mineral_residual_mineral
(
node
,
mineral
,
variable
);
m_is_micp
[
id
]
=
true
;
}
}
}
double
DiffusionProgram
::
nodal_mineral_residual_mineral
(
ind_t
node
,
int
mineral
,
const
Variables
&
variable
)
{
double
res
=
m_data
->
logk_mineral
(
mineral
);
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
res
-=
m_data
->
nu_mineral
(
mineral
,
component
)
*
(
m_ideq
.
component_concentration
(
node
,
component
,
variable
)
+
m_second
.
loggamma_component
(
node
,
component
));
}
return
res
;
}
// ================================== //
// //
// Jacobian //
// //
// ================================== //
void
DiffusionProgram
::
get_jacobian
(
Variables
&
variable
,
Vector
&
residual
,
SparseMatrix
&
jacobian
,
double
alphadt
)
{
list_triplet_t
jacob
;
const
ind_t
ncomp
=
m_data
->
nb_component
-
1
;
const
ind_t
nmin
=
m_data
->
nb_mineral
;
const
ind_t
estimation
=
m_mesh
->
nnodes
()
*
(
ncomp
*
(
3
+
ncomp
)
+
ncomp
*
(
ncomp
+
nmin
)
+
nmin
+
ncomp
*
2
);
jacob
.
reserve
(
estimation
);
jacobian_transport
(
variable
,
residual
,
jacob
,
alphadt
);
jacobian_speciation
(
variable
,
jacob
,
alphadt
);
jacobian
=
SparseMatrix
(
get_neq
(),
get_neq
());
jacobian
.
setFromTriplets
(
jacob
.
begin
(),
jacob
.
end
());
}
// Transport
// =========
void
DiffusionProgram
::
jacobian_transport
(
Variables
&
variable
,
Vector
&
residual
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
for
(
ind_t
element:
m_mesh
->
range_elements
())
{
element_jacobian_transport
(
element
,
variable
,
residual
,
jacobian
,
alphadt
);
}
}
void
DiffusionProgram
::
element_jacobian_transport
(
ind_t
element
,
Variables
&
variable
,
Vector
&
residual
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
for
(
int
component:
m_data
->
range_aqueous_component
())
{
Eigen
::
VectorXd
element_residual_orig
(
Eigen
::
VectorXd
::
Zero
(
2
));
element_residual_transport_component
(
element
,
component
,
variable
,
element_residual_orig
);
for
(
int
en:
m_mesh
->
range_nen
())
{
Eigen
::
VectorXd
element_residual
(
Eigen
::
VectorXd
::
Zero
(
2
));
const
ind_t
node
=
m_mesh
->
get_node
(
element
,
en
);
const
ind_t
idc
=
m_ideq
.
id_equation_diffusion
(
node
,
component
);
const
ind_t
dof
=
m_ideq
.
get_dof_diffusion
(
node
,
component
);
if
(
idc
==
no_equation
)
continue
;
const
double
tmp_v
=
variable
.
velocity
(
dof
);
const
double
tmp_d
=
variable
.
displacement
(
dof
);
double
h
=
EPS_J
*
std
::
abs
(
tmp_v
);
if
(
h
==
0
)
h
=
EPS_J
;
variable
.
velocity
(
dof
)
=
tmp_v
+
h
;
h
=
variable
.
velocity
(
dof
)
-
tmp_v
;
variable
.
displacement
(
dof
)
=
tmp_d
+
alphadt
*
h
;
element_residual_transport_component
(
element
,
component
,
variable
,
element_residual
);
variable
.
velocity
(
dof
)
=
tmp_v
;
variable
.
displacement
(
dof
)
=
tmp_d
;
for
(
int
enr:
m_mesh
->
range_nen
())
{
const
ind_t
noder
=
m_mesh
->
get_node
(
element
,
enr
);
const
ind_t
idr
=
m_ideq
.
id_equation_diffusion
(
noder
,
component
);
if
(
idr
==
no_equation
)
continue
;
jacobian
.
push_back
(
triplet_t
(
idr
,
idc
,
(
element_residual
(
enr
)
-
element_residual_orig
(
enr
))
/
h
));
}
// mineral -> not using finite difference
for
(
ind_t
mineral:
m_data
->
range_mineral
())
{
const
ind_t
idm
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
idm
!=
no_equation
)
jacobian
.
push_back
(
triplet_t
(
idc
,
idm
,
-
alphadt
*
m_mesh
->
crosssection
()
*
m_mesh
->
get_dx
(
element
)
*
m_data
->
nu_mineral
(
mineral
,
component
)
/
(
2.0
)));
}
}
}
}
// Speciation
// ==========
void
DiffusionProgram
::
jacobian_speciation
(
Variables
&
variable
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
for
(
ind_t
node:
m_mesh
->
range_nodes
())
{
nodal_jacobian_speciation_fd
(
node
,
variable
,
jacobian
,
alphadt
);
//nodal_jacobian_massbalance(node, variable, jacobian, alphadt);
//nodal_jacobian_mineral(node, variable, jacobian, alphadt);
}
}
void
DiffusionProgram
::
nodal_jacobian_speciation_fd
(
ind_t
node
,
Variables
&
variable
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
m_second
.
nodal_solve_secondary_variables
(
node
,
variable
);
// Residuals
Eigen
::
VectorXd
residual_massbalance_orig
(
m_data
->
nb_component
);
for
(
int
component:
m_data
->
range_aqueous_component
())
{
//std::cout << nodal_component_residual_massbalance(node, component, variable)<< std::endl;
residual_massbalance_orig
(
component
)
=
nodal_component_residual_massbalance
(
node
,
component
,
variable
);
}
Eigen
::
VectorXd
residual_mineral_orig
(
m_data
->
nb_mineral
);
for
(
int
mineral:
m_data
->
range_mineral
())
{
residual_mineral_orig
(
mineral
)
=
nodal_mineral_residual_mineral
(
node
,
mineral
,
variable
);
}
for
(
int
component:
m_data
->
range_aqueous_component
())
{
const
ind_t
id_c
=
m_ideq
.
id_equation_massbalance
(
node
,
component
);
if
(
id_c
==
no_equation
)
continue
;
const
ind_t
dof_c
=
m_ideq
.
get_dof_massbalance
(
node
,
component
);
double
tmp_v
=
variable
.
velocity
(
dof_c
);
double
tmp_d
=
variable
.
displacement
(
dof_c
);
double
h
=
std
::
abs
(
tmp_v
)
*
EPS_J
;
if
(
h
<
EPS_J
*
1e-2
)
h
=
EPS_J
;
variable
.
velocity
(
dof_c
)
+=
h
;
h
=
variable
.
velocity
(
dof_c
)
-
tmp_v
;
variable
.
displacement
(
dof_c
)
=
update_massbalance
(
variable
.
velocity
(
dof_c
),
tmp_d
,
alphadt
);
m_second
.
nodal_secondary_concentrations
(
node
,
variable
);
//m_second.nodal_solve_secondary_variables(node, variable);
// Aqueous mass balance equations
for
(
int
k:
m_data
->
range_aqueous_component
())
{
const
ind_t
id_k
=
m_ideq
.
id_equation_massbalance
(
node
,
k
);
if
(
id_k
==
no_equation
)
continue
;
const
double
residual
=
nodal_component_residual_massbalance
(
node
,
k
,
variable
);
jacobian
.
push_back
(
triplet_t
(
id_k
,
id_c
,
(
residual
-
residual_massbalance_orig
(
k
))
/
h
));
// contribution of total mobile concentration
if
(
k
==
component
)
{
const
ind_t
id_tc
=
m_ideq
.
id_equation_diffusion
(
node
,
component
);
if
(
id_tc
!=
no_equation
)
{
jacobian
.
push_back
(
triplet_t
(
id_c
,
id_tc
,
-
alphadt
));
}
}
}
// Mineral stability
for
(
int
mineral:
m_data
->
range_mineral
())
{
const
ind_t
id_m
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
id_m
==
no_equation
)
continue
;
double
residual
=
nodal_mineral_residual_mineral
(
node
,
mineral
,
variable
);
jacobian
.
push_back
(
triplet_t
(
id_m
,
id_c
,
(
residual
-
residual_mineral_orig
(
mineral
))
/
h
));
}
variable
.
velocity
(
dof_c
)
=
tmp_v
;
variable
.
displacement
(
dof_c
)
=
tmp_d
;
m_second
.
nodal_secondary_concentrations
(
node
,
variable
);
//m_second.nodal_solve_secondary_variables(node, variable);
}
// add dummy diagonal element for mineral => needed for reformulation
for
(
int
mineral:
m_data
->
range_mineral
())
{
const
ind_t
id_m
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
id_m
==
no_equation
)
continue
;
jacobian
.
push_back
(
triplet_t
(
id_m
,
id_m
,
0
));
}
}
void
DiffusionProgram
::
nodal_jacobian_massbalance
(
ind_t
node
,
const
Variables
&
variable
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
const
double
logten
=
std
::
log
(
10.0
);
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
const
ind_t
idp
=
m_ideq
.
id_equation_massbalance
(
node
,
component
);
if
(
idp
==
no_equation
)
continue
;
// total concentration
const
ind_t
idc
=
m_ideq
.
id_equation_diffusion
(
node
,
component
);
if
(
idc
!=
no_equation
)
{
jacobian
.
push_back
(
triplet_t
(
idp
,
idc
,
-
alphadt
));
}
for
(
ind_t
k:
m_data
->
range_aqueous_component
())
{
// concentration
const
ind_t
ids
=
m_ideq
.
id_equation_massbalance
(
node
,
k
);
if
(
ids
==
no_equation
)
continue
;
double
tmp_iip
=
0
;
if
(
k
==
component
)
tmp_iip
+=
logten
*
pow10
(
m_ideq
.
component_concentration
(
node
,
component
,
variable
));
for
(
ind_t
aqueous:
m_data
->
range_aqueous
())
{
if
(
m_data
->
nu_aqueous
(
aqueous
,
component
)
==
0.0
)
continue
;
tmp_iip
+=
(
logten
*
m_data
->
nu_aqueous
(
aqueous
,
component
)
*
m_data
->
nu_aqueous
(
aqueous
,
k
)
*
m_second
.
secondary_concentration
(
node
,
aqueous
));
//
}
jacobian
.
push_back
(
triplet_t
(
idp
,
ids
,
alphadt
*
tmp_iip
));
}
}
}
void
DiffusionProgram
::
nodal_jacobian_mineral
(
ind_t
node
,
const
Variables
&
variable
,
list_triplet_t
&
jacobian
,
double
alphadt
)
{
for
(
ind_t
mineral:
m_data
->
range_mineral
())
{
const
ind_t
idm
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
idm
==
no_equation
)
continue
;
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
const
ind_t
idc
=
m_ideq
.
id_equation_massbalance
(
node
,
component
);
if
(
idc
==
no_equation
)
continue
;
jacobian
.
push_back
(
triplet_t
(
idm
,
idc
,
-
alphadt
*
m_data
->
nu_mineral
(
mineral
,
component
)));
}
// make place for an element
jacobian
.
push_back
(
triplet_t
(
idm
,
idm
,
0
));
}
}
// Variables
// =========
void
DiffusionProgram
::
update_variables
(
ParabolicVariables
&
x
,
const
Eigen
::
VectorXd
&
predictor
,
const
Eigen
::
VectorXd
&
update
,
double
factor
,
double
alpha_dt
)
{
// for (ind_t node: m_mesh->range_nodes())
// {
// for (ind_t edof=0; edof<get_ndf(); ++edof)
// {
// if (m_ideq.id_equation(node, edof) == no_equation) continue;
// const ind_t dof = m_ideq.get_dof(node, edof);
// const ind_t id_eq = m_ideq.id_equation(node, edof);
// x.velocity(dof) += factor*update(id_eq);
// x.displacement(dof) = predictor(dof) + alpha_dt * x.velocity(dof);
// }
// }
for
(
ind_t
node:
m_mesh
->
range_nodes
())
{
for
(
int
component:
m_data
->
range_aqueous_component
())
{
const
ind_t
id_eq_d
=
m_ideq
.
id_equation_diffusion
(
node
,
component
);
if
(
id_eq_d
!=
no_equation
)
{
const
ind_t
dof_d
=
m_ideq
.
get_dof_diffusion
(
node
,
component
);
x
.
velocity
(
dof_d
)
+=
factor
*
update
(
id_eq_d
);
x
.
displacement
(
dof_d
)
=
update_diffusion
(
x
.
velocity
(
dof_d
),
predictor
(
dof_d
),
alpha_dt
);
}
const
ind_t
id_eq_b
=
m_ideq
.
id_equation_massbalance
(
node
,
component
);
if
(
id_eq_b
!=
no_equation
)
{
const
ind_t
dof_b
=
m_ideq
.
get_dof_massbalance
(
node
,
component
);
x
.
velocity
(
dof_b
)
+=
factor
*
update
(
id_eq_b
);
x
.
displacement
(
dof_b
)
=
update_massbalance
(
x
.
velocity
(
dof_b
),
predictor
(
dof_b
),
alpha_dt
);
}
}
for
(
int
mineral:
m_data
->
range_mineral
())
{
const
ind_t
id_eq_m
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
id_eq_m
!=
no_equation
)
{
const
ind_t
dof_m
=
m_ideq
.
get_dof_mineral
(
node
,
mineral
);
x
.
velocity
(
dof_m
)
+=
factor
*
update
(
id_eq_m
);
x
.
displacement
(
dof_m
)
=
update_mineral
(
x
.
velocity
(
dof_m
),
predictor
(
dof_m
),
alpha_dt
);
}
}
}
m_second
.
solve_secondary_variables
(
x
);
}
void
DiffusionProgram
::
set_predictor
(
ParabolicVariables
&
x
,
Eigen
::
VectorXd
&
predictor
,
double
alpha
,
double
dt
)
{
predictor
.
resize
(
m_mesh
->
nnodes
()
*
get_ndf
());
predictor
=
x
.
displacement
+
(
1
-
alpha
)
*
dt
*
x
.
velocity
;
x
.
velocity
.
setZero
();
WARNING
<<
"Predictor size : "
<<
predictor
.
rows
();
}
// compute secondary conc
bool
DiffusionProgram
::
hook_start_iteration
(
const
Variables
&
x
,
double
norm_residual
)
{
return
m_second
.
solve_secondary_variables
(
x
);
}
double
DiffusionProgram
::
maximum_lambda
(
const
ParabolicVariables
&
x
,
const
Eigen
::
VectorXd
&
update
,
double
alphadt
)
{
double
inv_maximum_lambda
=
1.0
;
// for (ind_t node: m_mesh->range_nodes())
// {
// for (int mineral: m_data->range_mineral())
// {
// if (m_ideq.id_equation_mineral(node, mineral) == no_equation
// or x.displacement(m_ideq.get_dof_mineral(node, mineral)) == 0) continue;
// inv_maximum_lambda = std::max(inv_maximum_lambda,
// -alphadt*update(m_ideq.id_equation_mineral(node, mineral))/
// (0.9*x.displacement(m_ideq.get_dof_mineral(node, mineral))));
// }
// }
return
1.0
/
inv_maximum_lambda
;
}
void
DiffusionProgram
::
initialize_no_bc_with_init
(
const
EquilibriumState
&
initialstate
,
ParabolicVariables
&
var
)
{
for
(
ind_t
node:
m_mesh
->
range_nodes
())
{
if
(
not
m_ideq
.
node_has_bc
(
node
))
{
for
(
ind_t
component:
m_data
->
range_aqueous_component
())
{
m_ideq
.
component_concentration
(
node
,
component
,
var
)
=
std
::
log10
(
initialstate
.
molality_component
(
component
));
m_ideq
.
mobile_total_concentration
(
node
,
component
,
var
)
=
initialstate
.
total_aqueous_concentration_component
(
component
);
m_second
.
loggamma_component
(
node
,
component
)
=
initialstate
.
loggamma_component
(
component
);
}
for
(
ind_t
aqueous:
m_data
->
range_aqueous
())
{
m_second
.
secondary_concentration
(
node
,
aqueous
)
=
initialstate
.
molality_secondary
()[
aqueous
];
m_second
.
loggamma_secondary
(
node
,
aqueous
)
=
initialstate
.
loggamma_secondary
(
aqueous
);
}
for
(
ind_t
mineral:
m_data
->
range_mineral
())
{
m_ideq
.
mole_mineral
(
node
,
mineral
,
var
)
=
initialstate
.
moles_mineral
(
mineral
)
/
m_mesh
->
cell_volume
(
1
);
}
}
}
}
void
DiffusionProgram
::
copy_cp_variables
(
const
ParabolicVariables
&
x
,
Eigen
::
VectorXd
&
moles_mineral
)
{
moles_mineral
.
resize
(
get_neq
());
moles_mineral
.
setZero
();
for
(
ind_t
node:
m_mesh
->
range_nodes
())
{
for
(
int
mineral:
m_data
->
range_mineral
())
{
const
int
id_eq
=
m_ideq
.
id_equation_mineral
(
node
,
mineral
);
if
(
id_eq
==
no_equation
)
continue
;
moles_mineral
(
id_eq
)
=
m_ideq
.
mole_mineral
(
node
,
mineral
,
x
);
}
}
}
void
DiffusionProgram
::
projection
(
ParabolicVariables
&
x
)
{
for
(
int
node:
m_mesh
->
range_nodes
())
{
for
(
int
mineral:
m_data
->
range_mineral
())
{
if
(
m_ideq
.
mole_mineral
(
node
,
mineral
,
x
)
<
1e-10
)
{
m_ideq
.
mole_mineral
(
node
,
mineral
,
x
)
=
0.0
;
}
}
}
}
}
// end namespace systems
}
// end namespace reactmicp
}
// end namespace specmicp
Event Timeline
Log In to Comment