Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122175452
kato_saturated.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jul 16, 08:50
Size
7 KB
Mime Type
text/x-c
Expires
Fri, Jul 18, 08:50 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27444781
Attached To
rTAMAAS tamaas
kato_saturated.cpp
View Options
/*
* SPDX-License-Indentifier: AGPL-3.0-or-later
*
* Copyright (©) 2016-2023 EPFL (École Polytechnique Fédérale de Lausanne),
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
* Copyright (©) 2020-2023 Lucas Frérot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "kato_saturated.hh"
#include "logger.hh"
#include <iomanip>
#include <limits>
/* -------------------------------------------------------------------------- */
namespace tamaas {
/* -------------------------------------------------------------------------- */
KatoSaturated::KatoSaturated(Model& model, const GridBase<Real>& surface,
Real tolerance, Real pmax)
: PolonskyKeerRey(model, surface, tolerance, PolonskyKeerRey::pressure,
PolonskyKeerRey::pressure),
pmax(pmax) {
model.request<true, Real>("KatoSaturated::residual_displacement",
model.getType(), model.getBoundaryDiscretization(),
1);
}
/* -------------------------------------------------------------------------- */
Real KatoSaturated::solve(std::vector<Real> load) {
GridBase<Real> initial_surface = surface;
GridBase<Real>& residual_disp =
model.field<Real>("KatoSaturated::residual_displacement");
residual_disp = 0;
const auto norm = surface.var();
auto negative = [this, norm](const GridBase<Real>& f) {
const auto neg_norm = Loop::reduce<operation::plus>(
[](const Real& f) { return (f < 0) * f * f; }, f);
return neg_norm / (norm * f.getGlobalNbPoints()) > this->tolerance;
};
UInt n = 0;
do {
surface = initial_surface;
surface -= residual_disp;
PolonskyKeerRey::solve(load);
// Update the rough surface
Loop::loop([] CUDA_LAMBDA(Real & h_pl, Real g) { h_pl -= g * (g < 0); },
residual_disp, *this->dual);
} while (negative(*this->dual) and n++ < this->max_iterations);
surface = initial_surface;
*this->displacement_view += residual_disp;
return Real(n >= this->max_iterations);
}
/* -------------------------------------------------------------------------- */
Real KatoSaturated::meanOnUnsaturated(const GridBase<Real>& /*field*/) const {
return 0;
}
Real KatoSaturated::computeSquaredNorm(const GridBase<Real>& /*field*/) const {
return 1.;
}
void KatoSaturated::updateSearchDirection(Real /*factor*/) {
*this->search_direction = *this->dual;
}
Real KatoSaturated::computeCriticalStep(Real /*target*/) {
// integral_op->apply(*search_direction, *projected_search_direction);
// Real num = search_direction->dot(*search_direction);
// Real denum = projected_search_direction->dot(*search_direction);
// return 0.1 * num / denum;
return 1;
}
bool KatoSaturated::updatePrimal(Real step) {
UInt na_num = Loop::reduce<operation::plus>(
[step] CUDA_LAMBDA(Real & p, const Real& /*q*/, const Real& t) -> UInt {
p -= step * t; // Updating primal
return 0;
// if (p < 0)
// p = 0; // Truncating neg values
// if (p == 0 && q < 0) { // If non-admissible state
// p -= step * q;
// return 1;
// } else
// return 0;
},
*primal, *dual, *search_direction);
return na_num == 0;
}
/* -------------------------------------------------------------------------- */
Real KatoSaturated::computeError() const {
// We shift the gap by the minimum on unsaturated area
const auto pmax = this->pmax;
const Real shift = Loop::reduce<operation::min>(
[pmax] CUDA_LAMBDA(Real p, Real d) {
return (p < pmax) ? d : std::numeric_limits<Real>::max();
},
*primal, *dual);
// Ignore points that are saturated
const Real error = Loop::reduce<operation::plus>(
[pmax, shift] CUDA_LAMBDA(Real p, Real d) {
return (p < pmax) ? p * (d - shift) : 0;
},
*primal, *dual);
if (std::isnan(error))
TAMAAS_EXCEPTION("Encountered NaN in complementarity error: this may be "
"caused by a contact area of a single node.");
Real norm = 1;
if (variable_type == pressure)
norm = std::abs(primal->sum() * this->surface_stddev);
else
norm = std::abs(dual->sum() * this->surface_stddev);
norm *= primal->getGlobalNbPoints();
return std::abs(error) / norm;
}
/* -------------------------------------------------------------------------- */
void KatoSaturated::enforceMeanValue(Real mean) {
// We want to cancel the difference between saturated alpha + t and the
// applied pressure
const auto pmax = this->pmax;
*primal -= primal->mean();
auto f = [&](Real scale) {
Real sum = Loop::reduce<operation::plus>(
[pmax, scale] CUDA_LAMBDA(Real t) -> Real {
t += scale;
if (t > pmax)
return pmax;
if (t < 0)
return 0;
return t;
},
*this->primal);
sum /= this->primal->getGlobalNbPoints();
return sum - mean;
};
if (pmax < mean)
TAMAAS_EXCEPTION("Cannot find equilibrium");
// Dichotomy + Secant Newton on f
// Initial points
Real x_n_2 = -primal->max(), x_n_1 = -primal->min(), x_n = 0.;
Real f_n_2 = 0., f_n_1 = 0., f_n = 0.;
// Find a not-to-large search interval
Logger().get(LogLevel::debug)
<< TAMAAS_DEBUG_MSG("Searching equilibrium interval");
while (std::signbit(f(x_n_1)) == std::signbit(f(x_n_2))) {
x_n_1 *= 10;
x_n_2 *= 10;
}
Logger().get(LogLevel::debug) << TAMAAS_DEBUG_MSG(
"Reducing interval [abs(x1/x2) = " << std::abs(x_n_1 / x_n_2) << ']');
UInt n_dic = 10;
f_n_1 = f(x_n_1);
for (UInt i = 0; i < n_dic; ++i) {
x_n = 0.5 * (x_n_1 + x_n_2);
f_n = f(x_n);
if (std::signbit(f_n) == std::signbit(f_n_1)) {
x_n_1 = x_n;
f_n_1 = f_n;
} else
x_n_2 = x_n;
}
Logger().get(LogLevel::debug)
<< TAMAAS_DEBUG_MSG("Starting Newton secant [abs(x1/x2) = "
<< std::abs(x_n_1 / x_n_2) << ']');
// Secant loop
do {
f_n_2 = f(x_n_2);
f_n_1 = f(x_n_1);
if (f_n_1 == f_n_2)
break; // Avoid nans
x_n = x_n_1 - f_n_1 * (x_n_1 - x_n_2) / (f_n_1 - f_n_2);
f_n = f(x_n);
x_n_2 = x_n_1;
x_n_1 = x_n;
} while (std::abs(f_n / mean) > 1e-14);
// Pressure update
Loop::loop(
[pmax, x_n] CUDA_LAMBDA(Real & t) {
t += x_n;
if (t > pmax)
t = pmax;
else if (t < 0)
t = 0.;
},
*this->primal);
}
/* -------------------------------------------------------------------------- */
void KatoSaturated::enforceAdmissibleState() {
/// Make dual admissible
const auto pmax = this->pmax;
Real shift = Loop::reduce<operation::min>(
[pmax] CUDA_LAMBDA(Real p, Real d) {
return (p < pmax) ? d : std::numeric_limits<Real>::max();
},
*primal, *dual);
*dual -= shift;
*displacement_view = *dual;
*displacement_view += this->surface;
}
} // namespace tamaas
Event Timeline
Log In to Comment