Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90844623
bem_kato.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 07:07
Size
7 KB
Mime Type
text/x-c
Expires
Thu, Nov 7, 07:07 (2 d)
Engine
blob
Format
Raw Data
Handle
22140656
Attached To
rTAMAAS tamaas
bem_kato.cpp
View Options
/**
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "bem_kato.hh"
#include "surface.hh"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <vector>
/* -------------------------------------------------------------------------- */
namespace
tamaas
{
Real
BemKato
::
linescan
(
Real
scale
,
Real
pressure
)
{
updatePressure
(
scale
);
shiftPressure
(
pressure
);
truncatePressure
();
Real
res
=
computeF
();
return
res
;
}
/* -------------------------------------------------------------------------- */
Real
BemKato
::
linesearch
(
Real
&
hmax
,
Real
fold
,
Real
pressure
,
int
search_flag
)
{
if
(
search_flag
)
{
Real
h
=
hmax
;
// Real fold = bem.computeF();
// if (fold == 0) fold = 1e300;
Real
f
=
linescan
(
h
,
pressure
);
if
(
f
<
fold
)
return
f
;
while
(
f
>
fold
)
{
h
*=
0.5
;
if
(
h
<
1e-3
)
throw
1
;
f
=
linescan
(
h
,
pressure
);
}
f
=
linescan
(
h
,
pressure
);
// if (hmax / h > 10) hmax /=2;
return
f
;
}
return
linescan
(
hmax
,
pressure
);
}
/* -------------------------------------------------------------------------- */
Real
BemKato
::
computeEquilibrium
(
Real
epsilon
,
Real
pressure
)
{
// UInt n = surface.size();
// UInt size = n*n;
this
->
computeSpectralInfluenceOverDisplacement
();
this
->
computeDisplacementsFromTractions
();
this
->
functional
->
computeGradFP
();
this
->
backupTractions
();
Real
f
=
1.
;
Real
fPrevious
=
1e300
;
this
->
nb_iterations
=
0
;
this
->
convergence_iterations
.
clear
();
while
(
f
>
epsilon
&&
this
->
nb_iterations
<
this
->
max_iterations
)
{
fPrevious
=
f
;
this
->
computeDisplacementsFromTractions
();
this
->
functional
->
computeGradFP
();
this
->
backupTractions
();
try
{
f
=
linescan
(
1.
,
pressure
);
}
catch
(
int
e
)
{
std
::
cout
<<
" line search failed "
<<
std
::
endl
;
f
=
linescan
(
1
,
pressure
);
nb_iterations
=
0
;
break
;
}
if
(
nb_iterations
%
dump_freq
==
0
)
{
// std::cout << std::scientific << std::setprecision(10) <<
// nb_iterations << " " << f << " " << f-fold << " " <<
// ((f-fold)/forigin) << std::endl;
std
::
cout
<<
std
::
scientific
<<
std
::
setprecision
(
10
)
<<
nb_iterations
<<
" "
<<
f
<<
" "
<<
f
-
fPrevious
<<
std
::
endl
;
}
convergence_iterations
.
push_back
(
f
);
++
nb_iterations
;
}
this
->
computeTrueDisplacements
();
this
->
computeGaps
();
return
f
;
}
/* -------------------------------------------------------------------------- */
void
BemKato
::
updatePressure
(
Real
scale
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
const
Surface
<
Real
>&
gradF
=
this
->
functional
->
getGradF
();
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
this
->
surface_tractions
(
i
)
=
this
->
surface_tractions_backup
(
i
)
-
gradF
(
i
)
*
scale
;
}
}
/* -------------------------------------------------------------------------- */
void
BemKato
::
backupTractions
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
this
->
surface_tractions_backup
(
i
)
=
this
->
surface_tractions
(
i
);
}
}
/* -------------------------------------------------------------------------- */
Real
BemKato
::
positivePressure
(
Real
step
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
p_tot
=
0.0
;
#pragma omp parallel for reduction(+ : p_tot)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
Real
sh_press
=
this
->
surface_tractions
(
i
)
+
step
;
if
(
sh_press
>
max_pressure
)
p_tot
+=
max_pressure
;
else
p_tot
+=
sh_press
*
(
sh_press
>
0
);
}
return
p_tot
/
n
/
n
;
}
/* -------------------------------------------------------------------------- */
void
BemKato
::
shiftPressure
(
Real
required_pressure
)
{
Real
step_min
=
-
10
;
Real
step_max
=
10
;
Real
p_max
=
positivePressure
(
step_max
);
Real
p_min
=
positivePressure
(
step_min
);
for
(
UInt
i
=
0
;
p_max
<
required_pressure
&&
i
<
8
;
++
i
,
step_max
*=
10
)
{
p_max
=
positivePressure
(
step_max
);
}
for
(
UInt
i
=
0
;
p_min
>
required_pressure
&&
i
<
8
;
++
i
,
step_min
*=
10
)
{
p_min
=
positivePressure
(
step_min
);
}
Real
p
=
positivePressure
(
0.0
);
Real
epsilon
=
1e-12
;
while
(
std
::
abs
(
step_min
-
step_max
)
>
epsilon
)
{
Real
step
=
(
step_min
+
step_max
)
/
2
;
p
=
positivePressure
(
step
);
if
(
p
>
required_pressure
)
step_max
=
step
;
else
if
(
p
<
required_pressure
)
step_min
=
step
;
else
{
step_max
=
step
;
step_min
=
step
;
}
}
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
// shift the pressure so that satisfies the constraint
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
this
->
surface_tractions
(
i
)
+=
(
step_max
+
step_min
)
/
2
;
}
}
/* -------------------------------------------------------------------------- */
void
BemKato
::
truncatePressure
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
// shift the pressure so that satisfies the constraint
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
>
max_pressure
)
this
->
surface_tractions
(
i
)
=
max_pressure
;
else
this
->
surface_tractions
(
i
)
*=
(
this
->
surface_tractions
(
i
)
>
0
);
}
}
/* -------------------------------------------------------------------------- */
void
BemKato
::
computeTrueDisplacements
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
shift
=
1e300
;
#pragma omp parallel for reduction(min : shift)
for
(
UInt
i
=
0
;
i
<
size
;
i
++
)
{
if
(
surface_displacements
(
i
)
-
shift
-
surface
(
i
)
<
0.
&&
surface_tractions
(
i
)
<
max_pressure
)
{
shift
=
surface_displacements
(
i
)
-
surface
(
i
);
}
}
this
->
true_displacements
=
surface_displacements
;
this
->
true_displacements
-=
shift
;
}
/* -------------------------------------------------------------------------- */
Real
BemKato
::
computeF
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
res
=
0
;
Real
t_sum
=
std
::
abs
(
SurfaceStatistics
::
computeSum
(
surface_tractions
));
computeTrueDisplacements
();
#pragma omp parallel for reduction(+ : res)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
==
this
->
max_pressure
)
continue
;
res
+=
std
::
abs
(
surface_tractions
(
i
)
*
(
this
->
true_displacements
(
i
)
-
surface
(
i
)));
// res +=
// this->surface_tractions[i].real()
// *(surface_displacements[i].real() - surface[i].real());
}
return
res
/
std
::
abs
(
t_sum
);
}
/* -------------------------------------------------------------------------- */
}
// namespace tamaas
Event Timeline
Log In to Comment