Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90410773
bem_polonski.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 10:38
Size
13 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 10:38 (2 d)
Engine
blob
Format
Raw Data
Handle
22067224
Attached To
rTAMAAS tamaas
bem_polonski.cpp
View Options
/**
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "bem_polonski.hh"
#include "fft_plan_manager.hh"
#include "fftransform.hh"
#include "surface.hh"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <vector>
/* -------------------------------------------------------------------------- */
namespace
tamaas
{
/* -------------------------------------------------------------------------- */
BemPolonski
::
BemPolonski
(
Surface
<
Real
>&
p
)
:
BemFFTBase
(
p
),
surface_t
(
p
.
size
(),
p
.
getL
()),
surface_r
(
p
.
size
(),
p
.
getL
()),
pold
(
p
.
size
(),
p
.
getL
()),
p_sat
(
-
1.
)
{
e_star
=
1.
;
max_iterations
=
2000
;
surface_rms_heights
=
SurfaceStatistics
::
computeStdev
(
this
->
surface
);
}
/* -------------------------------------------------------------------------- */
BemPolonski
::~
BemPolonski
()
{}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeEquilibrium
(
Real
epsilon
,
Real
pressure
)
{
this
->
computeSpectralInfluenceOverDisplacement
();
this
->
surface_t
=
0.
;
this
->
surface_r
=
0.
;
this
->
pold
=
0.
;
this
->
surface_displacements
=
0.
;
Real
delta
=
0.
;
Real
Gold
=
1.
;
Real
f
=
1e300
;
Real
fPrevious
=
1e300
;
Real
current_pressure
=
SurfaceStatistics
::
computeAverage
(
surface_tractions
);
std
::
cout
<<
"current pressure "
<<
current_pressure
<<
std
::
endl
;
if
(
current_pressure
<=
0.
)
surface_tractions
=
pressure
;
this
->
enforcePressureBalance
(
pressure
);
convergence_iterations
.
clear
();
nb_iterations
=
0
;
while
(
f
>
epsilon
&&
nb_iterations
<
max_iterations
)
{
fPrevious
=
f
;
this
->
computeDisplacementsFromTractions
();
this
->
computeGaps
();
Real
gbar
=
this
->
computeMeanGapsInContact
();
this
->
gap
-=
gbar
;
Real
G
=
this
->
computeG
();
this
->
updateT
(
G
,
Gold
,
delta
);
Real
tau
=
this
->
computeTau
();
pold
=
this
->
surface_tractions
;
Gold
=
G
;
delta
=
this
->
updateTractions
(
tau
);
// Projection on admissible space
this
->
enforcePressureBalance
(
pressure
);
// std::cout << std::scientific << std::setprecision(10)
// << SurfaceStatistics::computeAverage(surface_tractions) <<
// std::fixed << std::endl;
//
f
=
this
->
computeF
();
if
(
nb_iterations
%
dump_freq
==
0
)
{
Real
A
=
SurfaceStatistics
::
computeContactAreaRatio
(
surface_tractions
);
std
::
cout
<<
std
::
scientific
<<
std
::
setprecision
(
10
)
<<
nb_iterations
<<
" "
<<
f
<<
" "
<<
f
-
fPrevious
<<
" "
<<
A
<<
std
::
fixed
<<
std
::
endl
;
}
convergence_iterations
.
push_back
(
f
);
++
nb_iterations
;
}
this
->
computeTrueDisplacements
();
return
f
;
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeEquilibriuminit
(
Real
epsilon
,
Real
pressure
,
Surface
<
Real
>&
init
)
{
this
->
computeSpectralInfluenceOverDisplacement
();
this
->
surface_t
=
0.
;
this
->
surface_r
=
0.
;
this
->
pold
=
0.
;
this
->
surface_displacements
=
0.
;
Real
delta
=
0.
;
Real
Gold
=
1.
;
Real
f
=
1e300
;
Real
fPrevious
=
1e300
;
this
->
surface_tractions
=
init
;
Real
current_pressure
=
SurfaceStatistics
::
computeAverage
(
surface_tractions
);
if
(
current_pressure
<=
0.
)
surface_tractions
=
pressure
;
this
->
enforcePressureBalance
(
pressure
);
convergence_iterations
.
clear
();
nb_iterations
=
0
;
this
->
computeDisplacementsFromTractions
();
f
=
this
->
computeF
();
std
::
cout
<<
std
::
scientific
<<
std
::
setprecision
(
10
)
<<
" "
<<
f
<<
std
::
endl
;
while
(
f
>
epsilon
&&
nb_iterations
<
max_iterations
)
{
fPrevious
=
f
;
this
->
computeDisplacementsFromTractions
();
this
->
computeGaps
();
Real
gbar
=
this
->
computeMeanGapsInContact
();
this
->
gap
-=
gbar
;
Real
G
=
this
->
computeG
();
this
->
updateT
(
G
,
Gold
,
delta
);
Real
tau
=
this
->
computeTau
();
pold
=
this
->
surface_tractions
;
Gold
=
G
;
delta
=
this
->
updateTractions
(
tau
);
// Projection on admissible space
this
->
enforcePressureBalance
(
pressure
);
// std::cout << std::scientific << std::setprecision(10)
// << SurfaceStatistics::computeAverage(surface_tractions) <<
// std::fixed << std::endl;
//
f
=
this
->
computeF
();
if
(
nb_iterations
%
dump_freq
==
0
)
{
Real
A
=
SurfaceStatistics
::
computeContactAreaRatio
(
surface_tractions
);
std
::
cout
<<
std
::
scientific
<<
std
::
setprecision
(
10
)
<<
nb_iterations
<<
" "
<<
f
<<
" "
<<
f
-
fPrevious
<<
" "
<<
A
<<
std
::
fixed
<<
std
::
endl
;
}
convergence_iterations
.
push_back
(
f
);
++
nb_iterations
;
}
this
->
computeTrueDisplacements
();
return
f
;
}
/* -------------------------------------------------------------------------- */
void
BemPolonski
::
computeGaps
()
{
UInt
size
=
surface
.
size
();
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
*
size
;
i
++
)
{
gap
(
i
)
=
surface_displacements
(
i
)
-
surface
(
i
);
}
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeMeanGapsInContact
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
res
=
0.
;
UInt
nb_contact
=
0
;
#pragma omp parallel for reduction(+ : nb_contact, res)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
||
std
::
abs
(
this
->
surface_tractions
(
i
)
-
p_sat
)
<
1.0e-10
)
continue
;
++
nb_contact
;
res
+=
this
->
gap
(
i
);
}
res
/=
nb_contact
;
return
res
;
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeG
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
res
=
0.
;
#pragma omp parallel for reduction(+ : res)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
||
std
::
abs
(
this
->
surface_tractions
(
i
)
-
p_sat
)
<
1.0e-10
)
continue
;
Real
val
=
this
->
gap
(
i
);
res
+=
val
*
val
;
}
return
res
;
}
/* -------------------------------------------------------------------------- */
void
BemPolonski
::
updateT
(
Real
G
,
Real
Gold
,
Real
delta
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
factor
=
delta
*
G
/
Gold
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
)
this
->
surface_t
(
i
)
=
0.
;
else
{
this
->
surface_t
(
i
)
*=
factor
;
this
->
surface_t
(
i
)
+=
this
->
gap
(
i
);
}
}
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeTau
()
{
this
->
applyInfluenceFunctions
(
surface_t
,
surface_r
);
const
UInt
size
=
surface_t
.
size
()
*
surface_t
.
size
();
Real
rbar
=
0
;
UInt
nb_contact
=
0
;
#pragma omp parallel for reduction(+ : nb_contact, rbar)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
)
continue
;
++
nb_contact
;
rbar
+=
surface_r
(
i
);
}
rbar
/=
nb_contact
;
surface_r
-=
rbar
;
Real
tau_sum1
=
0.
,
tau_sum2
=
0.
;
#pragma omp parallel for reduction(+ : tau_sum1, tau_sum2)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
)
continue
;
tau_sum1
+=
this
->
gap
(
i
)
*
surface_t
(
i
);
tau_sum2
+=
surface_r
(
i
)
*
surface_t
(
i
);
}
Real
tau
=
tau_sum1
/
tau_sum2
;
return
tau
;
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
updateTractions
(
Real
tau
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0
)
continue
;
this
->
surface_tractions
(
i
)
-=
tau
*
this
->
surface_t
(
i
);
if
(
this
->
surface_tractions
(
i
)
<
0.
)
this
->
surface_tractions
(
i
)
=
0
;
}
// compute number of interpenetration without contact
UInt
nb_iol
=
0
;
#pragma omp parallel for reduction(+ : nb_iol)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
<=
0.
&&
this
->
gap
(
i
)
<
0.
)
{
this
->
surface_tractions
(
i
)
-=
tau
*
this
->
gap
(
i
);
++
nb_iol
;
}
}
// compute number of interpenetration without contact
UInt
nb_sl
=
0
;
#pragma omp parallel for reduction(+ : nb_sl)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
==
p_sat
&&
0.
<
this
->
gap
(
i
))
{
this
->
surface_tractions
(
i
)
-=
tau
*
this
->
gap
(
i
);
++
nb_sl
;
}
}
Real
delta
=
0
;
if
(
nb_iol
>
0
||
nb_sl
>
0
)
delta
=
0.
;
else
delta
=
1.
;
return
delta
;
}
/* -------------------------------------------------------------------------- */
void
BemPolonski
::
enforcePressureBalance
(
Real
applied_pressure
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
// If we have no saturation, scale to match applied_pressure
if
(
this
->
p_sat
<=
0.
||
SurfaceStatistics
::
computeMaximum
(
this
->
surface_tractions
)
<
this
->
p_sat
)
{
Real
pressure
=
0.
;
#pragma omp parallel for reduction(+ : pressure)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
pressure
+=
this
->
surface_tractions
(
i
);
}
pressure
*=
1.
/
size
;
this
->
surface_tractions
*=
applied_pressure
/
pressure
;
}
// If we have saturation, use secant method to find zero of saturationFunction
else
{
// Checking if we can find a zero
Real
limit
=
this
->
p_sat
*
SurfaceStatistics
::
computeContactArea
(
this
->
surface_tractions
)
-
applied_pressure
;
if
(
limit
<
0
)
SURFACE_FATAL
(
"Saturation pressure is too small for applied pressure"
);
// Initial points
Real
x_n_2
=
0.
,
x_n_1
=
1.
,
x_n
=
0.
;
Real
f_n_2
=
0.
,
f_n_1
=
0.
,
f_n
=
0.
;
// Secant loop
do
{
f_n_2
=
saturationFunction
(
x_n_2
,
applied_pressure
);
f_n_1
=
saturationFunction
(
x_n_1
,
applied_pressure
);
x_n
=
x_n_1
-
f_n_1
*
(
x_n_1
-
x_n_2
)
/
(
f_n_1
-
f_n_2
);
f_n
=
saturationFunction
(
x_n
,
applied_pressure
);
x_n_2
=
x_n_1
;
x_n_1
=
x_n
;
}
while
(
std
::
abs
(
f_n
)
>
1e-16
);
this
->
surface_tractions
*=
x_n
;
// Truncating pressures
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
i
++
)
{
if
(
this
->
surface_tractions
(
i
)
>
this
->
p_sat
)
this
->
surface_tractions
(
i
)
=
this
->
p_sat
;
}
// Real mu_I_sat=0.;
// #pragma omp parallel for reduction(+: mu_I_sat)
// for (UInt i = 0; i < size; ++i) {
// if ( this->p_sat< this->surface_tractions(i) ){
// mu_I_sat+=1.;
// }
// }
// Real pc=0.;
// #pragma omp parallel for reduction(+: pc)
// for (UInt i = 0; i < size; ++i) {
// if ( this->surface_tractions(i) < this->p_sat ){
// pc+=this->surface_tractions(i);}
// }
// #pragma omp parallel for
// for (UInt i = 0; i < size; ++i) {
// if ( this->surface_tractions(i) < this->p_sat ){
// this->surface_tractions(i)=
// this->surface_tractions(i)*((size*applied_pressure-this->p_sat*mu_I_sat)/pc);}
// }
// #pragma omp parallel for
// for (UInt i = 0; i < size; ++i) {
// if ( this->p_sat< this->surface_tractions(i) ){
// this->surface_tractions(i)=this->p_sat;
// }
// }
}
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
saturationFunction
(
Real
alpha
,
Real
applied_pressure
)
{
const
UInt
n
=
surface
.
size
();
const
UInt
size
=
n
*
n
;
Real
sum
=
0.
;
#pragma omp parallel for reduction(+ : sum)
for
(
UInt
i
=
0
;
i
<
size
;
i
++
)
{
Real
alpha_p
=
alpha
*
this
->
surface_tractions
(
i
);
Real
alpha_p_I
=
(
alpha_p
>
this
->
p_sat
)
?
alpha_p
-
this
->
p_sat
:
0.
;
sum
+=
alpha_p
-
alpha_p_I
;
}
sum
/=
size
;
return
sum
-
applied_pressure
;
}
/* -------------------------------------------------------------------------- */
Real
BemPolonski
::
computeF
()
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
res
=
0
;
Real
t_sum
=
SurfaceStatistics
::
computeSum
(
surface_tractions
);
computeTrueDisplacements
();
#pragma omp parallel for reduction(+ : res)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
surface_tractions
(
i
)
==
this
->
p_sat
)
continue
;
res
+=
surface_tractions
(
i
)
*
(
this
->
true_displacements
(
i
)
-
surface
(
i
));
// res +=
// this->surface_tractions[i].real()
// *(surface_displacements[i].real() - surface[i].real());
}
return
std
::
abs
(
res
/
t_sum
/
surface_rms_heights
/
size
);
}
/* -------------------------------------------------------------------------- */
void
BemPolonski
::
computeTrueDisplacements
()
{
this
->
applyInfluenceFunctions
(
this
->
surface_tractions
,
this
->
surface_displacements
);
this
->
true_displacements
=
this
->
surface_displacements
;
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
shift
=
1e300
;
#pragma omp parallel for reduction(min : shift)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
surface_displacements
(
i
)
-
shift
-
surface
(
i
)
<
0.
&&
(
this
->
p_sat
<
0
||
this
->
surface_tractions
(
i
)
<
this
->
p_sat
))
{
shift
=
surface_displacements
(
i
)
-
surface
(
i
);
}
}
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
true_displacements
(
i
)
=
surface_displacements
(
i
)
-
shift
;
}
}
/* -------------------------------------------------------------------------- */
}
// namespace tamaas
Event Timeline
Log In to Comment