Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90359598
polonsky_keer_rey.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Oct 31, 23:06
Size
8 KB
Mime Type
text/x-c
Expires
Sat, Nov 2, 23:06 (2 d)
Engine
blob
Format
Raw Data
Handle
22061874
Attached To
rTAMAAS tamaas
polonsky_keer_rey.cpp
View Options
/**
* @file
* @author Lucas Frérot <lucas.frerot@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016-2017 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "polonsky_keer_rey.hh"
#include "elastic_functional.hh"
#include "fft_plan_manager.hh"
#include "loop.hh"
#include "model_type.hh"
#include <boost/preprocessor/seq.hpp>
#include <iomanip>
#include <iterator>
/* -------------------------------------------------------------------------- */
__BEGIN_TAMAAS__
PolonskyKeerRey
::
PolonskyKeerRey
(
Model
&
model
,
const
GridBase
<
Real
>&
surface
,
Real
tolerance
,
type
variable_type
,
type
constraint_type
)
:
ContactSolver
(
model
,
surface
,
tolerance
),
variable_type
(
variable_type
),
constraint_type
(
constraint_type
)
{
#define SET_VIEWS(_, __, type) \
case type: { \
setViews<type>(); \
break; \
}
switch
(
model
.
getType
())
{
BOOST_PP_SEQ_FOR_EACH
(
SET_VIEWS
,
~
,
TAMAAS_MODEL_TYPES
);
}
#undef SET_VIEWS
search_direction
=
allocateGrid
<
true
,
Real
>
(
operation_type
,
model
.
getBoundaryDiscretization
());
projected_search_direction
=
allocateGrid
<
true
,
Real
>
(
operation_type
,
model
.
getBoundaryDiscretization
());
switch
(
variable_type
)
{
case
gap:
{
model
.
getBEEngine
().
registerDirichlet
();
primal
=
gap_view
.
get
();
dual
=
pressure_view
.
get
();
this
->
functional
.
addFunctionalTerm
(
new
functional
::
ElasticFunctionalGap
(
*
integral_op
,
this
->
surface
),
true
);
break
;
}
case
pressure:
{
model
.
getBEEngine
().
registerNeumann
();
primal
=
pressure_view
.
get
();
dual
=
gap_view
.
get
();
this
->
functional
.
addFunctionalTerm
(
new
functional
::
ElasticFunctionalPressure
(
*
integral_op
,
this
->
surface
),
true
);
break
;
}
}
}
/* -------------------------------------------------------------------------- */
Real
PolonskyKeerRey
::
solve
(
Real
target
)
{
Real
G
=
0
,
Gold
=
1
,
error
=
0
,
error_norm
=
1
;
UInt
n
=
0
;
bool
delta
=
false
;
*
search_direction
=
0
;
//*dual = 0;
// Printing column headers
std
::
cout
<<
std
::
setw
(
5
)
<<
"Iter"
<<
" "
<<
std
::
setw
(
15
)
<<
"Cost_f"
<<
" "
<<
std
::
setw
(
15
)
<<
"Error"
<<
'\n'
<<
std
::
fixed
;
// Setting uniform value if constraint
if
(
constraint_type
==
variable_type
&&
std
::
abs
(
primal
->
sum
())
<=
0
)
*
primal
=
target
;
else
if
(
constraint_type
==
variable_type
)
*
primal
*=
target
/
primal
->
mean
();
else
if
(
constraint_type
!=
variable_type
)
*
primal
=
this
->
surface_stddev
;
do
{
// Computing functional gradient
functional
.
computeGradF
(
*
primal
,
*
dual
);
Real
dbar
=
meanOnUnsaturated
(
*
dual
);
// Enforcing dual constraint via gradient
if
(
constraint_type
!=
variable_type
)
{
*
dual
+=
2
*
target
+
dbar
;
}
else
{
// Centering dual on primal > 0
*
dual
-=
dbar
;
}
// Computing gradient norm
G
=
computeSquaredNorm
(
*
dual
);
// Updating search direction (conjugate gradient)
updateSearchDirection
(
delta
*
G
/
Gold
);
Gold
=
G
;
// Computing critical step
Real
tau
=
computeCriticalStep
(
target
);
// Update primal variable
delta
=
updatePrimal
(
tau
);
// We should scale to constraint
if
(
constraint_type
==
variable_type
)
*
primal
*=
target
/
primal
->
mean
();
error
=
computeError
()
/
error_norm
;
Real
cost_f
=
functional
.
computeF
(
*
primal
,
*
dual
);
printState
(
n
,
cost_f
,
error
);
}
while
(
error
>
this
->
tolerance
&&
n
++
<
this
->
max_iterations
);
// Final update of dual variable
functional
.
computeGradF
(
*
primal
,
*
dual
);
Real
dual_min
=
dual
->
min
();
*
dual
-=
dual_min
;
// Primal is pressure: need to make sure gap is positive
if
(
variable_type
==
pressure
)
{
*
displacement_view
=
*
dual
;
*
displacement_view
+=
this
->
surface
;
}
// Primal is gap: need to make sure dual is positive (pressure + adhesion)
else
{
*
displacement_view
=
*
primal
;
*
displacement_view
+=
this
->
surface
;
integral_op
->
apply
(
*
displacement_view
,
*
pressure_view
);
*
pressure_view
-=
dual_min
;
}
return
error
;
}
/* -------------------------------------------------------------------------- */
/**
* Computes \f$ \frac{1}{\mathrm{card}(\{p > 0\})} \sum_{\{p > 0\}}{f_i} \f$
*/
Real
PolonskyKeerRey
::
meanOnUnsaturated
(
const
GridBase
<
Real
>&
field
)
const
{
// Sum on unsaturated
Real
sum
=
Loop
::
reduce
<
operation
::
plus
>
(
[]
CUDA_LAMBDA
(
Real
&
p
,
const
Real
&
f
)
{
return
(
p
>
0
)
?
f
:
0
;
},
*
primal
,
field
);
// Number of unsaturated points
UInt
n_unsat
=
Loop
::
reduce
<
operation
::
plus
>
(
[]
CUDA_LAMBDA
(
Real
&
p
)
->
UInt
{
return
(
p
>
0
);
},
*
primal
);
return
sum
/
n_unsat
;
}
/* -------------------------------------------------------------------------- */
/**
* Computes \f$ \sum_{\{p > 0\}}{f_i^2} \f$
*/
Real
PolonskyKeerRey
::
computeSquaredNorm
(
const
GridBase
<
Real
>&
field
)
const
{
return
Loop
::
reduce
<
operation
::
plus
>
(
[]
CUDA_LAMBDA
(
Real
&
p
,
const
Real
&
f
)
{
return
(
p
>
0
)
?
f
*
f
:
0
;
},
*
primal
,
field
);
}
/* -------------------------------------------------------------------------- */
/**
* Computes \f$ \tau = \frac{ \sum_{\{p > 0\}}{q_i't_i} }{ \sum_{\{p > 0\}}{r_i'
* t_i} } \f$
*/
Real
PolonskyKeerRey
::
computeCriticalStep
(
Real
target
)
{
integral_op
->
apply
(
*
search_direction
,
*
projected_search_direction
);
Real
rbar
=
meanOnUnsaturated
(
*
projected_search_direction
);
if
(
constraint_type
==
variable_type
)
*
projected_search_direction
-=
rbar
;
else
{
*
projected_search_direction
+=
2
*
target
+
rbar
;
}
Real
num
=
Loop
::
reduce
<
operation
::
plus
>
(
[]
CUDA_LAMBDA
(
Real
&
p
,
Real
&
q
,
Real
&
t
)
{
return
(
p
>
0
)
?
q
*
t
:
0
;
},
*
primal
,
*
dual
,
*
search_direction
);
Real
denum
=
Loop
::
reduce
<
operation
::
plus
>
(
[]
CUDA_LAMBDA
(
Real
&
p
,
Real
&
r
,
Real
&
t
)
{
return
(
p
>
0
)
?
r
*
t
:
0
;
},
*
primal
,
*
projected_search_direction
,
*
search_direction
);
return
num
/
denum
;
}
/* -------------------------------------------------------------------------- */
/**
* Update steps:
* 1. \f$\mathbf{p} = \mathbf{p} - \tau \mathbf{t} \f$
* 2. Truncate all \f$p\f$ negative
* 3. For all points in \f$I_\mathrm{na} = \{p = 0 \land q < 0 \}\f$ do \f$p_i =
* p_i - \tau q_i\f$
*/
bool
PolonskyKeerRey
::
updatePrimal
(
Real
step
)
{
UInt
na_num
=
Loop
::
reduce
<
operation
::
plus
>
(
[
step
]
CUDA_LAMBDA
(
Real
&
p
,
Real
&
q
,
Real
&
t
)
->
UInt
{
p
-=
step
*
t
;
// Updating primal
if
(
p
<
0
)
p
=
0
;
// Truncating neg values
if
(
p
==
0
&&
q
<
0
)
{
// If non-admissible state
p
-=
step
*
q
;
return
1
;
}
else
return
0
;
},
*
primal
,
*
dual
,
*
search_direction
);
return
na_num
==
0
;
}
/* -------------------------------------------------------------------------- */
/**
* Error is based on \f$ \sum{p_i q_i} \f$
*/
Real
PolonskyKeerRey
::
computeError
()
{
/// Making sure dual respects constraint
*
dual
-=
dual
->
min
();
Real
error
=
primal
->
dot
(
*
dual
);
Real
norm
=
1
;
if
(
variable_type
==
pressure
)
norm
=
std
::
abs
(
primal
->
sum
()
*
this
->
surface_stddev
);
else
norm
=
std
::
abs
(
dual
->
sum
()
*
this
->
surface_stddev
);
norm
*=
primal
->
getNbPoints
();
return
std
::
abs
(
error
)
/
norm
;
}
/* -------------------------------------------------------------------------- */
/**
* Do \f$\mathbf{t} = \mathbf{q}' + \delta \frac{R}{R_\mathrm{old}}\mathbf{t}
* \f$
*/
void
PolonskyKeerRey
::
updateSearchDirection
(
Real
factor
)
{
Loop
::
loop
(
[
factor
]
CUDA_LAMBDA
(
Real
&
p
,
Real
&
q
,
Real
&
t
)
{
t
=
(
p
>
0
)
?
q
+
factor
*
t
:
0
;
},
*
primal
,
*
dual
,
*
search_direction
);
}
/* -------------------------------------------------------------------------- */
void
PolonskyKeerRey
::
addFunctionalTerm
(
functional
::
Functional
*
func
)
{
functional
.
addFunctionalTerm
(
func
,
false
);
}
__END_TAMAAS__
/* -------------------------------------------------------------------------- */
Event Timeline
Log In to Comment