Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91985677
adhesion.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 09:34
Size
3 KB
Mime Type
text/x-python
Expires
Mon, Nov 18, 09:34 (2 d)
Engine
blob
Format
Raw Data
Handle
22359005
Attached To
rTAMAAS tamaas
adhesion.py
View Options
#!/usr/bin/env python3
# @file
# @section LICENSE
#
# Copyright (©) 2016-2020 EPFL (École Polytechnique Fédérale de Lausanne),
# Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import
tamaas
as
tm
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
argparse
from
matplotlib.colors
import
ListedColormap
class
AdhesionPython
(
tm
.
Functional
):
"""
Functional class that extends a C++ class and implements the virtual
methods
"""
def
__init__
(
self
,
rho
,
gamma
):
tm
.
Functional
.
__init__
(
self
)
self
.
rho
=
rho
self
.
gamma
=
gamma
def
computeF
(
self
,
gap
,
pressure
):
return
-
self
.
gamma
*
np
.
sum
(
np
.
exp
(
-
gap
/
self
.
rho
))
def
computeGradF
(
self
,
gap
,
gradient
):
gradient
+=
self
.
gamma
*
np
.
exp
(
-
gap
/
self
.
rho
)
/
self
.
rho
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--local-functional'
,
dest
=
"py_adh"
,
action
=
"store_true"
,
help
=
"use the adhesion functional written in python"
)
args
=
parser
.
parse_args
()
# Surface size
n
=
1024
# Surface generator
sg
=
tm
.
SurfaceGeneratorFilter2D
([
n
,
n
])
sg
.
random_seed
=
0
# Spectrum
sg
.
spectrum
=
tm
.
Isopowerlaw2D
()
# Parameters
sg
.
spectrum
.
q0
=
16
sg
.
spectrum
.
q1
=
16
sg
.
spectrum
.
q2
=
64
sg
.
spectrum
.
hurst
=
0.8
# Generating surface
surface
=
sg
.
buildSurface
()
surface
/=
n
plt
.
imshow
(
surface
)
plt
.
title
(
'Rough surface'
)
# Creating model
model
=
tm
.
ModelFactory
.
createModel
(
tm
.
model_type_basic_2d
,
[
1.
,
1.
],
[
n
,
n
])
# Solver
solver
=
tm
.
PolonskyKeerRey
(
model
,
surface
,
1e-12
,
tm
.
PolonskyKeerRey
.
gap
,
tm
.
PolonskyKeerRey
.
gap
)
adhesion_params
=
{
"rho"
:
2e-3
,
"surface_energy"
:
2e-5
}
# Use the python derived from C++ functional class
if
args
.
py_adh
:
adhesion
=
AdhesionPython
(
adhesion_params
[
"rho"
],
adhesion_params
[
"surface_energy"
])
# Use the C++ class
else
:
adhesion
=
tm
.
ExponentialAdhesionFunctional
(
surface
)
adhesion
.
setParameters
(
adhesion_params
)
solver
.
addFunctionalTerm
(
adhesion
)
# Solve for target pressure
g_target
=
5e-2
solver
.
solve
(
g_target
)
tractions
=
model
.
traction
plt
.
figure
()
plt
.
imshow
(
tractions
)
plt
.
colorbar
()
plt
.
title
(
'Contact tractions'
)
plt
.
figure
()
zones
=
np
.
zeros_like
(
tractions
)
tol
=
1e-6
zones
[
tractions
>
tol
]
=
1
zones
[
tractions
<
-
tol
]
=
-
1
plt
.
imshow
(
zones
,
cmap
=
ListedColormap
([
'white'
,
'gray'
,
'black'
]))
plt
.
colorbar
(
ticks
=
[
-
2
/
3
,
0
,
2
/
3
])
.
set_ticklabels
([
'Adhesion'
,
'No Contact'
,
'Contact'
])
plt
.
title
(
'Contact and Adhesion Zones'
)
plt
.
show
()
Event Timeline
Log In to Comment