Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F103060597
operations.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 26, 23:11
Size
5 KB
Mime Type
text/x-c++
Expires
Fri, Feb 28, 23:11 (2 d)
Engine
blob
Format
Raw Data
Handle
24486982
Attached To
rTAMAAS tamaas
operations.hh
View Options
/**
* @file
*
* @author Lucas Frérot <lucas.frerot@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Expolit is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Expolit is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Expolit. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPERATIONS_HH
#define OPERATIONS_HH
#include "types.hh"
#include <functional>
#include <ostream>
#include <utility>
namespace
expolit
{
/**
* @brief Type for unary operation
*/
template
<
typename
T
,
typename
Op
>
struct
UnaryOperation
:
Expression
<
UnaryOperation
<
T
,
Op
>>
{
/// Construct from an expression
constexpr
UnaryOperation
(
const
Expression
<
T
>&
t
)
:
expression
(
t
.
downcast
())
{}
/// Evaluate operation
template
<
typename
Val
>
constexpr
auto
operator
()(
Val
&&
v
)
const
{
return
op
(
expression
(
v
));
}
const
T
expression
;
const
Op
op
=
Op
();
};
/**
* @brief Type for binary operation
*
* Handles binary operations between two arbitrary expressions
*/
template
<
typename
T
,
typename
U
,
typename
Op
>
struct
BinaryOperation
:
Expression
<
BinaryOperation
<
T
,
U
,
Op
>>
{
/// Construct from two expressions
constexpr
BinaryOperation
(
const
Expression
<
T
>&
t
,
const
Expression
<
U
>&
u
)
:
operands
(
t
.
downcast
(),
u
.
downcast
())
{}
/// Evaluate operation
template
<
typename
Val
>
constexpr
auto
operator
()(
Val
&&
v
)
const
{
return
op
(
operands
.
first
(
v
),
operands
.
second
(
v
));
}
constexpr
auto
commute
()
const
{
return
BinaryOperation
<
U
,
T
,
Op
>
(
operands
.
second
,
operands
.
first
);
}
/// Product operarands
const
std
::
pair
<
T
,
U
>
operands
;
const
Op
op
=
Op
();
};
/// Symmetric of T, U
template
<
typename
T
,
typename
U
,
typename
Op
>
using
SBinaryOperation
=
BinaryOperation
<
U
,
T
,
Op
>
;
/// Product expression
template
<
typename
T
,
typename
U
>
using
Product
=
BinaryOperation
<
T
,
U
,
std
::
multiplies
<>>
;
/// Sum expression
template
<
typename
T
,
typename
U
>
using
Sum
=
BinaryOperation
<
T
,
U
,
std
::
plus
<>>
;
/// Difference expression
template
<
typename
T
,
typename
U
>
using
Difference
=
BinaryOperation
<
T
,
U
,
std
::
minus
<>>
;
/// Division expression
template
<
typename
T
,
typename
U
>
using
Division
=
BinaryOperation
<
T
,
U
,
std
::
divides
<>>
;
/* -------------------------------------------------------------------------- */
/* Algebraic rules */
/* -------------------------------------------------------------------------- */
/// Product operator
template
<
typename
Der1
,
typename
Der2
>
constexpr
auto
operator
*
(
const
Expression
<
Der1
>&
e1
,
const
Expression
<
Der2
>&
e2
)
{
return
Product
<
Der1
,
Der2
>
(
e1
,
e2
);
}
/// Sum operator
template
<
typename
Der1
,
typename
Der2
>
constexpr
auto
operator
+
(
const
Expression
<
Der1
>&
e1
,
const
Expression
<
Der2
>&
e2
)
{
return
Sum
<
Der1
,
Der2
>
(
e1
,
e2
);
}
/// Difference operator
template
<
typename
Der1
,
typename
Der2
>
constexpr
auto
operator
-
(
const
Expression
<
Der1
>&
e1
,
const
Expression
<
Der2
>&
e2
)
{
return
Difference
<
Der1
,
Der2
>
(
e1
,
e2
);
}
/// Division operator
template
<
typename
Der1
,
typename
Der2
>
constexpr
auto
operator
/
(
const
Expression
<
Der1
>&
e1
,
const
Expression
<
Der2
>&
e2
)
{
return
Division
<
Der1
,
Der2
>
(
e1
,
e2
);
}
namespace
detail
{
template
<
UInt
n
>
struct
power_acc
{
template
<
typename
DerAcc
,
typename
Derived
>
static
constexpr
auto
accumulate
(
const
Expression
<
DerAcc
>&
acc
,
const
Expression
<
Derived
>&
e
)
{
return
power_acc
<
n
-
1
>::
accumulate
(
acc
.
downcast
()
*
e
.
downcast
(),
e
);
}
};
template
<>
struct
power_acc
<
1
>
{
template
<
typename
DerAcc
,
typename
Derived
>
static
constexpr
auto
accumulate
(
const
Expression
<
DerAcc
>&
acc
,
const
Expression
<
Derived
>&
)
{
return
acc
.
downcast
();
}
};
}
// namespace detail
template
<
UInt
n
,
typename
Derived
>
constexpr
auto
pow
(
const
Expression
<
Derived
>&
e
)
{
return
detail
::
power_acc
<
n
>::
accumulate
(
e
,
e
);
}
/* -------------------------------------------------------------------------- */
/* Output */
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
typename
U
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Product
<
T
,
U
>&
p
)
{
os
<<
"("
<<
p
.
operands
.
first
<<
")"
<<
" * "
<<
"("
<<
p
.
operands
.
second
<<
")"
;
return
os
;
}
template
<
typename
T
,
typename
U
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Division
<
T
,
U
>&
p
)
{
os
<<
"("
<<
p
.
operands
.
first
<<
")"
<<
" / "
<<
"("
<<
p
.
operands
.
second
<<
")"
;
return
os
;
}
template
<
typename
T
,
typename
U
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Difference
<
T
,
U
>&
p
)
{
os
<<
p
.
operands
.
first
<<
" - "
<<
p
.
operands
.
second
;
return
os
;
}
template
<
typename
T
,
typename
U
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Sum
<
T
,
U
>&
p
)
{
os
<<
p
.
operands
.
first
<<
" + "
<<
p
.
operands
.
second
;
return
os
;
}
}
// namespace expolit
#endif
Event Timeline
Log In to Comment