Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90865637
test_model.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 11:50
Size
5 KB
Mime Type
text/x-c
Expires
Thu, Nov 7, 11:50 (2 d)
Engine
blob
Format
Raw Data
Handle
22149026
Attached To
rTAMAAS tamaas
test_model.cpp
View Options
/**
* @file
* @section LICENSE
*
* Copyright (©) 2016-2021 EPFL (École Polytechnique Fédérale de Lausanne),
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "isotropic_hardening.hh"
#include "logger.hh"
#include "model_factory.hh"
#include "mpi_interface.hh"
#include "test.hh"
#include <random>
/* -------------------------------------------------------------------------- */
using
namespace
tamaas
;
TEST
(
TestModel
,
applyElasticity
)
{
auto
model
=
ModelFactory
::
createModel
(
model_type
::
volume_2d
,
{
1.
,
1.
,
1.
},
{
1
,
1
,
1
});
Grid
<
Real
,
3
>
gradient
({
1
,
1
,
1
},
9
),
stress
({
1
,
1
,
1
},
9
);
// Random data objects
std
::
random_device
rnd
;
std
::
mt19937
mt
(
rnd
());
std
::
normal_distribution
<>
dis
(
0
,
1
);
// Filling gradient with random data (sequential)
for
(
auto
&
du
:
gradient
)
du
=
dis
(
mt
);
std
::
uniform_real_distribution
<>
unif
(
0
,
0.5
);
model
->
setElasticity
(
std
::
abs
(
dis
(
mt
))
*
unif
(
mt
),
unif
(
mt
));
// Computing stresses with seperate array
model
->
applyElasticity
(
stress
,
gradient
);
// Checking correct isotropic elasticity
auto
mu
=
model
->
getShearModulus
(),
nu
=
model
->
getPoissonRatio
();
auto
lambda
=
2
*
mu
*
nu
/
(
1
-
2
*
nu
);
MatrixProxy
<
Real
,
3
,
3
>
grad
(
gradient
(
0
));
auto
trace
=
grad
.
trace
();
Matrix
<
Real
,
3
,
3
>
sigma
;
for
(
UInt
i
=
0
;
i
<
3
;
++
i
)
for
(
UInt
j
=
0
;
j
<
3
;
++
j
)
sigma
(
i
,
j
)
=
(
i
==
j
)
*
lambda
*
trace
+
mu
*
(
grad
(
i
,
j
)
+
grad
(
j
,
i
));
EXPECT_TRUE
(
compare
(
stress
,
sigma
,
AreFloatEqual
()))
<<
"Elasticity fail"
;
// Computing stress with same array
model
->
applyElasticity
(
gradient
,
gradient
);
EXPECT_TRUE
(
compare
(
gradient
,
stress
,
AreFloatEqual
()))
<<
"Applying elasticity in-place fail"
;
}
TEST
(
TestModel
,
applyElasticitySym
)
{
auto
model
=
ModelFactory
::
createModel
(
model_type
::
volume_2d
,
{
1.
,
1.
,
1.
},
{
1
,
1
,
1
});
Grid
<
Real
,
3
>
gradient
({
1
,
1
,
1
},
6
),
stress
({
1
,
1
,
1
},
6
);
// Random data objects
std
::
random_device
rnd
;
std
::
mt19937
mt
(
rnd
());
std
::
normal_distribution
<>
dis
(
0
,
1
);
// Filling gradient with random data (sequential)
for
(
auto
&
du
:
gradient
)
du
=
dis
(
mt
);
std
::
uniform_real_distribution
<>
unif
(
0
,
0.5
);
model
->
setElasticity
(
std
::
abs
(
dis
(
mt
))
*
unif
(
mt
),
unif
(
mt
));
// Computing stresses with seperate array
model
->
applyElasticity
(
stress
,
gradient
);
// Checking correct isotropic elasticity
auto
mu
=
model
->
getShearModulus
(),
nu
=
model
->
getPoissonRatio
();
auto
lambda
=
2
*
mu
*
nu
/
(
1
-
2
*
nu
);
SymMatrixProxy
<
Real
,
3
>
sym_grad
(
gradient
(
0
));
auto
grad
=
dense
(
sym_grad
);
auto
trace
=
grad
.
trace
();
Matrix
<
Real
,
3
,
3
>
sigma
;
for
(
UInt
i
=
0
;
i
<
3
;
++
i
)
for
(
UInt
j
=
0
;
j
<
3
;
++
j
)
sigma
(
i
,
j
)
=
(
i
==
j
)
*
lambda
*
trace
+
mu
*
(
grad
(
i
,
j
)
+
grad
(
j
,
i
));
EXPECT_TRUE
(
compare
(
stress
,
symmetrize
(
sigma
),
AreFloatEqual
()))
<<
"Elasticity fail"
;
// Computing stress with same array
model
->
applyElasticity
(
gradient
,
gradient
);
EXPECT_TRUE
(
compare
(
gradient
,
stress
,
AreFloatEqual
()))
<<
"Applying elasticity in-place fail"
;
}
TEST
(
TestIsotropicHardening
,
computePlasticIncrement
)
{
mpi
::
sequential_guard
guard
;
auto
model
=
ModelFactory
::
createModel
(
model_type
::
volume_2d
,
{
1.
,
1.
,
1.
},
{
1
,
1
,
1
});
auto
sigma_0
=
1.
,
h
=
0.1
;
IsotropicHardening
<
model_type
::
volume_2d
>
hardening
(
model
.
get
(),
sigma_0
,
h
);
Grid
<
Real
,
3
>
strain
({
1
,
1
,
1
},
6
),
strain_increment
({
1
,
1
,
1
},
6
),
plastic_strain_increment
({
1
,
1
,
1
},
6
),
solution
({
1
,
1
,
1
},
6
);
auto
E
=
model
->
getYoungModulus
();
auto
nu
=
model
->
getPoissonRatio
();
auto
mu
=
model
->
getShearModulus
();
// uniform tension state
Real
sigma
=
0.9
;
strain_increment
(
0
,
0
,
0
,
0
)
=
sigma
/
E
;
strain_increment
(
0
,
0
,
0
,
1
)
=
-
nu
*
sigma
/
E
;
strain_increment
(
0
,
0
,
0
,
2
)
=
-
nu
*
sigma
/
E
;
hardening
.
computePlasticIncrement
<
false
>
(
plastic_strain_increment
,
strain
,
strain_increment
);
// just checking everything is zero
EXPECT_TRUE
(
compare
(
solution
,
plastic_strain_increment
,
AreFloatEqual
()))
<<
"Elastic radial return fail (plastic increment)"
;
// uniform tension state
sigma
=
1.1
;
strain_increment
(
0
,
0
,
0
,
0
)
=
sigma
/
E
;
strain_increment
(
0
,
0
,
0
,
1
)
=
-
nu
*
sigma
/
E
;
strain_increment
(
0
,
0
,
0
,
2
)
=
-
nu
*
sigma
/
E
;
hardening
.
computePlasticIncrement
<
false
>
(
plastic_strain_increment
,
strain
,
strain_increment
);
Real
a
=
(
sigma
-
sigma_0
)
/
(
3
*
mu
+
h
);
solution
(
0
,
0
,
0
,
0
)
=
a
;
solution
(
0
,
0
,
0
,
1
)
=
-
a
/
2
;
solution
(
0
,
0
,
0
,
2
)
=
-
a
/
2
;
EXPECT_TRUE
(
compare
(
solution
,
plastic_strain_increment
,
AreFloatEqual
()))
<<
"Plastic radial return fail (plastic increment)"
;
}
Event Timeline
Log In to Comment