Page MenuHomec4science

kato.hh
No OneTemporary

File Metadata

Created
Sat, Jun 1, 09:01
/**
* @file
*
* @author Son Pham-Ba <son.phamba@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016-2018 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __KATO_HH__
#define __KATO_HH__
/* -------------------------------------------------------------------------- */
#include "contact_solver.hh"
#include "meta_functional.hh"
#include "model_type.hh"
#include "static_types.hh"
#include "tamaas.hh"
/* -------------------------------------------------------------------------- */
__BEGIN_TAMAAS__
class Kato : public ContactSolver {
public:
/// Constructor
Kato(Model& model, const GridBase<Real>& surface, Real tolerance, Real mu);
public:
/// Solve
Real solve(GridBase<Real>& p0, UInt proj_iter);
/// Solve relaxed problem
Real solveRelaxed(GridBase<Real>& g0);
/// Solve regularized problem
Real solveRegularized(GridBase<Real>& p0, Real r);
/// Compute cost function
Real computeCost(bool use_tresca = false);
private:
/// Template for solve function
template <model_type type>
Real solveTmpl(GridBase<Real>& p0, UInt proj_iter);
/// Template for solveRelaxed function
template <model_type type>
Real solveRelaxedTmpl(GridBase<Real>& g0);
/// Template for solveRegularized function
template <model_type type>
Real solveRegularizedTmpl(GridBase<Real>& p0, Real r);
protected:
/// Creates surfaceComp form surface
template <model_type type>
void initSurfaceWithComponents();
/// Compute gradient of functional
template <UInt comp>
void computeGradient(bool use_tresca = false);
/// Project pressure on friction cone
template <UInt comp>
void enforcePressureConstraints(GridBase<Real>& p0, UInt proj_iter);
/// Project on C
template <UInt comp>
void enforcePressureMean(GridBase<Real>& p0);
/// Project on D
template <UInt comp>
void enforcePressureCoulomb();
/// Project on D (Tresca)
template <UInt comp>
void enforcePressureTresca();
/// Comupte mean value of field
template <UInt comp>
Vector<Real, comp> computeMean(GridBase<Real>& field);
/// Add vector to each point of field
template <UInt comp>
void addUniform(GridBase<Real>& field, GridBase<Real>& vec);
/// Regularization function with factor r (0 -> unregugularized)
Real regularize(Real x, Real r);
/// Compute shift
template <model_type type>
Real computeBeta();
/// Compute grids of dual and primal variables
template <model_type type>
void computeValuesForCost(Real beta, GridBase<Real>& lambda,
GridBase<Real>& eta, GridBase<Real>& p_N, GridBase<Real>& p_C);
/// Compute dual and primal variables with Tresca friction
template <model_type type>
void computeValuesForCostTresca(GridBase<Real>& lambda,
GridBase<Real>& eta, GridBase<Real>& p_N, GridBase<Real>& p_C);
/// Compute total displacement
template <UInt comp>
void computeFinalGap();
protected:
BEEngine& engine;
GridBase<Real>* gap = nullptr;
GridBase<Real>* pressure = nullptr;
std::unique_ptr<GridBase<Real>> surfaceComp = nullptr;
Real mu = 0;
UInt N = 0; // number of points
};
/* -------------------------------------------------------------------------- */
/**
* Projects $\vec{p}$ on $\mathcal{C}$ and $\mathcal{D}$.
*/
template <UInt comp>
void Kato::enforcePressureConstraints(GridBase<Real>& p0, UInt proj_iter) {
for (UInt i = 0; i < proj_iter; i++) {
enforcePressureMean<comp>(p0);
enforcePressureCoulomb<comp>();
}
}
/* -------------------------------------------------------------------------- */
template <UInt comp>
void Kato::enforcePressureCoulomb() {
Loop::stridedLoop(
[this] CUDA_LAMBDA(VectorProxy<Real, comp>&& p) {
VectorProxy<Real, comp - 1> p_T(p(0));
Real p_N = p(comp - 1);
Real p_T_sqrd= p_T.l2squared();
// Projection normale au cône de friction
bool cond1 = (p_N >= 0 && p_T_sqrd <= mu * mu * p_N * p_N);
bool cond2 = (p_N <= 0 && p_T_sqrd <= p_N * p_N / mu / mu);
if (cond2) {
p_T = 0;
p(comp - 1) = 0;
} else if (!cond1) {
Real p_T_norm = std::sqrt(p_T_sqrd);
Real k = (p_N + mu * p_T_norm) / (1 + mu * mu);
p_T *= k * mu / p_T_norm;
p(comp - 1) = k;
}
},
*pressure);
}
/* -------------------------------------------------------------------------- */
/**
* Compute mean of the field taking each component separately.
*/
template <UInt comp>
Vector<Real, comp> Kato::computeMean(GridBase<Real>& field) {
Vector<Real, comp> mean = Loop::stridedReduce<operation::plus>(
[] CUDA_LAMBDA(VectorProxy<Real, comp>&& f) -> Vector<Real, comp> {
return f;
},
field);
mean /= N;
return mean;
}
/* -------------------------------------------------------------------------- */
template <UInt comp>
void Kato::addUniform(GridBase<Real>& field, GridBase<Real>& vec) {
VectorProxy<Real, comp> _vec(vec(0));
field += _vec;
}
__END_TAMAAS__
#endif // __KATO_HH__

Event Timeline