Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92005698
adhesion.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 13:30
Size
5 KB
Mime Type
text/x-python
Expires
Mon, Nov 18, 13:30 (2 d)
Engine
blob
Format
Raw Data
Handle
22362318
Attached To
rTAMAAS tamaas
adhesion.py
View Options
#!/usr/bin/env python
# @file
# @section LICENSE
#
# Copyright (©) 2016-2020 EPFL (École Polytechnique Fédérale de Lausanne),
# Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import
sys
import
tamaas
as
tm
import
numpy
as
np
import
matplotlib.pyplot
as
plt
def
plotSurface
(
surface
):
fig
=
plt
.
figure
()
ax
=
fig
.
add_subplot
(
111
)
img
=
ax
.
imshow
(
surface
)
#fig.colorbar(img)
def
constructHertzProfile
(
size
,
curvature
):
radius
=
1.
/
curvature
x
=
np
.
linspace
(
-
0.5
,
0.5
,
size
)
y
=
np
.
linspace
(
-
0.5
,
0.5
,
size
)
x
,
y
=
np
.
meshgrid
(
x
,
y
)
surface
=
np
.
sqrt
(
radius
**
2
-
x
**
2
-
y
**
2
)
surface
-=
surface
.
min
()
return
surface
.
copy
()
def
computeHertzDisplacement
(
e_star
,
contact_size
,
max_pressure
,
size
):
x
=
np
.
linspace
(
-
0.5
,
0.5
,
size
)
y
=
np
.
linspace
(
-
0.5
,
0.5
,
size
)
x
,
y
=
np
.
meshgrid
(
x
,
y
)
disp
=
np
.
pi
*
max_pressure
/
(
4
*
contact_size
*
e_star
)
*
(
2
*
contact_size
**
2
-
(
x
**
2
+
y
**
2
))
return
disp
.
copy
()
def
main
():
grid_size
=
128
curvature
=
0.5
effective_modulus
=
1.
load
=
0.1
surface_energy
=
0
rho
=
2.071e-7
surface
=
constructHertzProfile
(
grid_size
,
curvature
)
# SG = tm.SurfaceGeneratorFilterFFT()
# SG.getGridSize().assign(grid_size)
# SG.getHurst().assign(0.8)
# SG.getRMS().assign(0.002);
# SG.getQ0().assign(8);
# SG.getQ1().assign(8);
# SG.getQ2().assign(16);
# SG.getRandomSeed().assign(156);
# SG.Init()
# surface = SG.buildSurface()
print
"Max height {}"
.
format
(
surface
.
max
())
print
"Min height {}"
.
format
(
surface
.
min
())
bem
=
tm
.
BemGigi
(
surface
)
bem
.
setDumpFreq
(
1
)
functional
=
tm
.
ExponentialAdhesionFunctional
(
bem
)
functional
.
setParameter
(
'rho'
,
rho
)
functional
.
setParameter
(
'surface_energy'
,
surface_energy
)
bem
.
setEffectiveModulus
(
effective_modulus
)
bem
.
addFunctional
(
functional
)
bem
.
computeEquilibrium
(
1e-6
,
load
)
tractions
=
bem
.
getTractions
()
print
"Average pressure = {}"
.
format
(
tractions
.
mean
())
# bem.computeTrueDisplacements()
t_displacements
=
bem
.
getTrueDisplacements
()
t_gap
=
bem
.
getGap
()
plotSurface
(
tractions
)
plt
.
figure
()
plt
.
plot
(
surface
[
grid_size
/
2
,
:])
plt
.
title
(
"Surface"
)
plt
.
figure
()
plt
.
plot
(
tractions
[
grid_size
/
2
,
:])
plt
.
title
(
"Pressure"
)
plt
.
figure
()
plt
.
plot
(
t_gap
[
grid_size
/
2
,
:])
plt
.
title
(
"Gap"
)
plt
.
figure
()
plt
.
plot
(
t_displacements
[
grid_size
/
2
,
:])
plt
.
title
(
"Displacement"
)
plt
.
figure
()
plt
.
plot
(
t_displacements
[
grid_size
/
2
,
:]
-
surface
[
grid_size
/
2
,
:])
plt
.
title
(
"Disp-surf"
)
plotSurface
(
t_displacements
)
plt
.
show
()
return
0
# Testing contact area against Hertz solution for solids of revolution
contact_area
=
tm
.
SurfaceStatistics
.
computeContactArea
(
tractions
)
hertz_contact_size
=
(
3
*
load
/
(
4
*
curvature
*
effective_modulus
))
**
(
1.
/
3.
)
hertz_area
=
np
.
pi
*
hertz_contact_size
**
2
area_error
=
np
.
abs
(
hertz_area
-
contact_area
)
/
hertz_area
print
"Area error: {}"
.
format
(
area_error
)
# Testing maximum pressure
max_pressure
=
tractions
.
max
()
hertz_max_pressure
=
(
6
*
load
*
effective_modulus
**
2
*
curvature
**
2
)
**
(
1.
/
3.
)
/
np
.
pi
pressure_error
=
np
.
abs
(
hertz_max_pressure
-
max_pressure
)
/
hertz_max_pressure
print
"Max pressure error: {}"
.
format
(
pressure_error
)
# Testing displacements
hertz_displacements
=
computeHertzDisplacement
(
effective_modulus
,
hertz_contact_size
,
hertz_max_pressure
,
grid_size
)
# Selecing only the points that are in contact
contact_indexes
=
[(
i
,
j
,
tractions
[
i
,
j
]
>
0
)
for
i
in
range
(
grid_size
)
for
j
in
range
(
grid_size
)]
contact_indexes
=
map
(
lambda
x
:
x
[
0
:
2
],
filter
(
lambda
x
:
x
[
2
],
contact_indexes
))
# Displacements of bem are centered around the mean of the whole surface
# and Hertz displacements are not centered, so we need to compute mean
# on the contact zone for both arrays
bem_mean
=
0.
hertz_mean
=
0.
for
index
in
contact_indexes
:
bem_mean
+=
displacements
[
index
]
hertz_mean
+=
hertz_displacements
[
index
]
bem_mean
/=
len
(
contact_indexes
)
hertz_mean
/=
len
(
contact_indexes
)
# Correction applied when computing error
correction
=
hertz_mean
-
bem_mean
# Computation of error of displacement in contact zone
error
=
0.
hertz_norm
=
0.
for
index
in
contact_indexes
:
error
+=
(
hertz_displacements
[
index
]
-
displacements
[
index
]
-
correction
)
**
2
hertz_norm
+=
(
hertz_displacements
[
index
]
-
hertz_mean
)
**
2
displacement_error
=
np
.
sqrt
(
error
/
hertz_norm
)
print
"Displacement error (in contact zone): {}"
.
format
(
displacement_error
)
if
area_error
>
1e-2
or
pressure_error
>
1e-2
or
displacement_error
>
1e-4
:
return
1
return
0
if
__name__
==
"__main__"
:
sys
.
exit
(
main
())
Event Timeline
Log In to Comment