Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F106896326
bem_gigi.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Apr 2, 05:22
Size
12 KB
Mime Type
text/x-c
Expires
Fri, Apr 4, 05:22 (2 d)
Engine
blob
Format
Raw Data
Handle
25300532
Attached To
rTAMAAS tamaas
bem_gigi.cpp
View Options
/**
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <vector>
#include "surface.hh"
#include "bem_gigi.hh"
#include <iostream>
#include <sstream>
#include <fstream>
#include <iomanip>
#include <sstream>
#include <cmath>
/* -------------------------------------------------------------------------- */
#define TIMER
#include "surface_timer.hh"
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
computeEquilibrium
(
Real
epsilon
,
Real
mean_displacement
)
{
this
->
computeSpectralInfluenceOverDisplacement
();
Real
Rold
=
1.
;
//Real Gold=1.;
Real
f
=
1e300
;
this
->
search_direction
=
0.
;
this
->
true_displacements
=
0
;
this
->
true_displacements
=
mean_displacement
;
this
->
computeGaps
();
this
->
optimizeToMeanDisplacement
(
mean_displacement
);
this
->
computeGaps
();
std
::
cout
<<
"moyenne deplacement "
<<
SurfaceStatistics
::
computeAverage
(
this
->
true_displacements
,
0
)
<<
std
::
endl
;
convergence_iterations
.
clear
();
nb_iterations
=
0
;
UInt
crit2
=
10
;
max_iterations
=
1000
;
while
(
f
>
epsilon
&&
nb_iterations
++
<
max_iterations
)
{
this
->
computeGaps
();
this
->
functional
->
computeGradF
();
Real
R
=
this
->
functional
->
computeGradientNorm
();
std
::
cout
<<
"norme gradient "
<<
R
<<
std
::
endl
;
this
->
updateSearchDirection
(
R
/
Rold
);
Rold
=
R
;
Real
alpha
=
this
->
computeOptimalStep
();
std
::
cout
<<
"alpha vaut "
<<
alpha
<<
std
::
endl
;
this
->
old_displacements
=
this
->
true_displacements
;
this
->
updateDisplacements
(
alpha
);
std
::
cout
<<
"moyenne deplacement "
<<
SurfaceStatistics
::
computeAverage
(
this
->
true_displacements
,
0
)
<<
std
::
endl
;
this
->
computeGaps
();
this
->
optimizeToMeanDisplacement
(
mean_displacement
);
//espace admissible
this
->
computeGaps
();
this
->
computePressures
(
mean_displacement
);
//p=K-1*u
Real
G
=
this
->
computeG
();
G
=
0.
;
// std::cout << "G vaut "<< G<< std::endl;
UInt
inner_loop_cpt
=
0
;
//Inner loop
while
(
G
>
0.
&&
inner_loop_cpt
<
crit2
)
{
++
inner_loop_cpt
;
this
->
computeGaps
();
this
->
functional
->
computeGradF
();
this
->
updateSearchDirection
(
R
/
Rold
);
Real
tau
=
this
->
computeTau
();
//Gold = G;
this
->
updateDisplacementsB
(
tau
);
this
->
computeGaps
();
this
->
optimizeToMeanDisplacement
(
mean_displacement
);
//espace admissible
this
->
computePressures
(
mean_displacement
);
//p=K-1*u
this
->
computeGaps
();
G
=
this
->
computeG
();
std
::
cout
<<
"G vaut "
<<
G
<<
std
::
endl
;
}
f
=
computeStoppingCriterion
();
if
(
nb_iterations
%
dump_freq
==
0
)
{
std
::
cout
<<
std
::
scientific
<<
std
::
setprecision
(
10
)
<<
nb_iterations
<<
" "
<<
f
<<
std
::
fixed
<<
std
::
endl
;
}
convergence_iterations
.
push_back
(
f
);
// if(nb_iterations == 2) return 0;
}
this
->
computePressures
(
mean_displacement
);
return
f
;
}
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
computeStoppingCriterion
()
{
Real
crit
=
0.
;
Real
disp_norm
=
0.
;
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for reduction(+:crit, disp_norm)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
crit
+=
(
this
->
old_displacements
(
i
)
-
true_displacements
(
i
))
*
(
this
->
old_displacements
(
i
)
-
true_displacements
(
i
));
disp_norm
+=
(
true_displacements
(
i
)
*
true_displacements
(
i
));
}
return
crit
/
disp_norm
;
}
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
computeG
(){
STARTTIMER
(
"computeG"
);
unsigned
int
n
=
surface
.
size
();
unsigned
int
size
=
n
*
n
;
Real
res
=
0.
;
#pragma omp parallel for reduction(+: res)
for
(
unsigned
int
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
gap
(
i
)
>
0
)
{
Real
val
=
this
->
surface_tractions
(
i
);
res
+=
val
*
val
;}
}
STOPTIMER
(
"computeG"
);
return
res
;
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
optimizeToMeanDisplacement
(
Real
imposed_mean
)
{
Real
target_value
=
imposed_mean
-
SurfaceStatistics
::
computeAverage
(
surface
,
0
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
// Initial guesses for upper and lower bound
Real
step_min
=
-
10
;
Real
step_max
=
10
;
// Gaps for upper and lower bound
Real
gap_min
=
positiveGapAverage
(
step_min
);
Real
gap_max
=
positiveGapAverage
(
step_max
);
UInt
max_expansion
=
8
;
// Expand bounds if necessary
for
(
UInt
i
=
0
;
gap_max
<
target_value
&&
i
<
max_expansion
;
i
++
,
step_max
*=
10
)
gap_max
=
positiveGapAverage
(
step_max
);
for
(
UInt
i
=
0
;
gap_min
>
target_value
&&
i
<
max_expansion
;
i
++
,
step_min
*=
10
)
gap_min
=
positiveGapAverage
(
step_min
);
Real
g
=
0.
;
Real
epsilon
=
1e-12
;
Real
step
=
0
;
while
(
fabs
(
g
-
target_value
)
>
epsilon
)
{
step
=
(
step_min
+
step_max
)
/
2.
;
g
=
positiveGapAverage
(
step
);
if
(
g
>
target_value
)
step_max
=
step
;
else
if
(
g
<
target_value
)
step_min
=
step
;
else
{
step_max
=
step
;
step_min
=
step
;
}
}
step
=
(
step_min
+
step_max
)
/
2.
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
i
++
)
{
gap
(
i
)
+=
step
;
if
(
gap
(
i
)
<
0
)
gap
(
i
)
=
0
;
true_displacements
(
i
)
=
gap
(
i
)
+
surface
(
i
);
}
}
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
positiveGapAverage
(
Real
shift
)
{
UInt
n
=
surface
.
size
();
Real
res
=
0
;
#pragma omp parallel for reduction(+: res)
for
(
UInt
i
=
0
;
i
<
n
*
n
;
i
++
)
{
Real
shifted_gap
=
gap
(
i
)
+
shift
;
res
+=
shifted_gap
*
(
shifted_gap
>
0
);
}
return
res
/
(
n
*
n
);
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
updateSearchDirection
(
Real
factor
)
{
STARTTIMER
(
"updateSearchDirection"
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Surface
<
Real
>
&
gradF
=
this
->
functional
->
getGradF
();
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
// this->search_direction(i) *=factor;
this
->
search_direction
(
i
)
=
gradF
(
i
);
}
STOPTIMER
(
"updateSearchDirection"
);
}
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
computeOptimalStep
()
{
STARTTIMER
(
"computeOptimalStep"
);
search_direction
.
FFTTransform
(
spectral_search_direction
,
nthreads
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
spectral_search_direction
(
0
)
=
0
;
#pragma omp parallel for
for
(
UInt
i
=
1
;
i
<
size
;
++
i
)
{
spectral_search_direction
(
i
)
/=
this
->
surface_spectral_influence_disp
(
i
);
}
// /!\ does not contain the spectral search direction anymore
spectral_search_direction
.
FFTITransform
(
nthreads
);
// Real average = SurfaceStatistics::computeAverage(spectral_search_direction.real(), 0);
// spectral_search_direction -= average;
Surface
<
Real
>
&
gradF
=
this
->
functional
->
getGradF
();
Real
numerator
=
0.
,
denominator
=
0.
;
#pragma omp parallel for reduction(+: numerator, denominator)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
numerator
+=
gradF
(
i
)
*
search_direction
(
i
);
denominator
+=
spectral_search_direction
(
i
).
real
()
*
search_direction
(
i
);
}
Real
alpha
=
numerator
/
denominator
;
STOPTIMER
(
"computeOptimalStep"
);
return
alpha
;
}
/* -------------------------------------------------------------------------- */
Real
BemGigi
::
computeTau
()
{
STARTTIMER
(
"computeOptimalStep"
);
search_direction
.
FFTTransform
(
spectral_search_direction
,
nthreads
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
spectral_search_direction
(
0
)
=
0
;
#pragma omp parallel for
for
(
UInt
i
=
1
;
i
<
size
;
++
i
)
{
spectral_search_direction
(
i
)
/=
this
->
surface_spectral_influence_disp
(
i
);
}
// /!\ does not contain the spectral search direction anymore
spectral_search_direction
.
FFTITransform
(
nthreads
);
// Real average = SurfaceStatistics::computeAverage(spectral_search_direction.real(), 0);
// spectral_search_direction -= average;
Surface
<
Real
>
&
gradF
=
this
->
functional
->
getGradF
();
Real
numerator
=
0.
,
denominator
=
0.
;
#pragma omp parallel for reduction(+: numerator, denominator)
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
gap
(
i
)
>
0
)
{
numerator
+=
gradF
(
i
)
*
search_direction
(
i
);
denominator
+=
spectral_search_direction
(
i
).
real
()
*
search_direction
(
i
);}
}
Real
tau
=
numerator
/
denominator
;
STOPTIMER
(
"computeOptimalStep"
);
return
tau
;
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
updateDisplacements
(
Real
alpha
)
{
STARTTIMER
(
"updateDisplacements"
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
this
->
true_displacements
(
i
)
-=
alpha
*
this
->
search_direction
(
i
);
}
STOPTIMER
(
"updateDisplacements"
);
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
updateDisplacementsB
(
Real
alpha
)
{
STARTTIMER
(
"updateDisplacements"
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
this
->
gap
(
i
)
>
0
){
this
->
true_displacements
(
i
)
-=
alpha
*
this
->
search_direction
(
i
);
}
}
STOPTIMER
(
"updateDisplacements"
);
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
emptyOverlap
()
{
STARTTIMER
(
"emptyoverlap"
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
if
(
gap
(
i
)
<
0
)
this
->
true_displacements
(
i
)
=
this
->
surface
(
i
);
}
STOPTIMER
(
"emptyoverlap"
);
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
enforceMeanDisplacement
(
Real
mean_displacement
)
{
STARTTIMER
(
"enforceMeanDisplacement"
);
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
average
=
SurfaceStatistics
::
computeAverage
(
this
->
true_displacements
,
0
);
Real
factor
=
mean_displacement
/
average
;
#pragma omp parallel for
for
(
UInt
i
=
0
;
i
<
size
;
++
i
)
{
this
->
true_displacements
(
i
)
*=
factor
;
}
STOPTIMER
(
"enforceMeanDisplacement"
);
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
computePressures
(
Real
mean_displacement
)
{
UInt
n
=
surface
.
size
();
UInt
size
=
n
*
n
;
Real
moy_surface
=
SurfaceStatistics
::
computeAverage
(
this
->
surface
,
0
);
this
->
true_displacements
.
FFTTransform
(
this
->
surface_spectral_tractions
,
nthreads
);
this
->
surface_spectral_tractions
(
0
)
=
0
;
#pragma omp parallel for
for
(
UInt
i
=
1
;
i
<
size
;
++
i
)
{
this
->
surface_spectral_tractions
(
i
)
/=
this
->
surface_spectral_influence_disp
(
i
);
}
this
->
surface_spectral_tractions
.
FFTITransform
(
this
->
surface_tractions
,
nthreads
);
Real
true_pressure
=
0.
;
for
(
UInt
i
=
0
;
i
<
n
*
n
;
i
++
)
{
true_pressure
+=
this
->
surface_tractions
(
i
)
*
(
this
->
true_displacements
(
i
)
-
mean_displacement
-
this
->
surface
(
i
));
}
true_pressure
/=
(
moy_surface
*
size
-
mean_displacement
*
size
);
std
::
cout
<<
"true_pressure "
<<
true_pressure
<<
std
::
endl
;
//this->surface_tractions += true_pressure;
}
/* -------------------------------------------------------------------------- */
void
BemGigi
::
computeTruePressures
(
Real
mean_displacement
)
{
this
->
computeGaps
();
this
->
functional
->
computeGradF
();
UInt
n
=
gap
.
size
();
//Orthogonalite
for
(
UInt
i
=
0
;
i
<
n
*
n
;
i
++
)
{
if
(
this
->
gap
(
i
)
>
0
){
this
->
surface_tractions
(
i
)
=
0
;
}
}
}
Event Timeline
Log In to Comment