Installing TensorFlow with GPU Support for Windows in order to use CARE
= Prerequisites =
# Get latest [[https://www.geforce.com/drivers|NVIDIA drivers]]
# Get [[https://developer.nvidia.com/cuda-10.0-download-archive|CUDA 10.0 Toolkit]]
# Get [[https://developer.nvidia.com/rdp/cudnn-download|cuDNN for CUDA 10.0]] (Needs you to login)
# Get [[https://www.python.org/downloads/|Python 3.7 x64]]
# Get [[https://nodejs.org/en/|NodeJS ]]
Install everything with defaults except Python. Mae sure to add Python to the PATH
Everything installs automatically except for cuDNN. For cuDNN, copy paste the contents of the zip file into
`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0`
After installing python, install pip and virtualenv.
Start `cmd` as an administrator and use
`python -m pip install --upgrade pip`
`pip install virtualenv`
= Setup =
== 1. Create the virtual environement wherever you want, for example `D:\CARE-TF-GPU` ==
`virtualenv -p python D:\CARE-TF-GPU\`
==2. Activate the virtual environement ==
```d:
cd CARE-TF-GPU
Scripts\activate
```
== 3. Install `tensorflow-gpu`, `csbdeep` and `jupyter notebook` ==
`pip install tensorflow-gpu csbdeep jupyter notebook`
== 4. Check that the `jupyter notebook` is loading the right kernel with ==
`jupyter kernelspec list`
And your output should look like this
```
Available kernels:
python3 d:\care-tf-gpu\share\jupyter\kernels\python3
```
= Test =
Launch Jupyter Notebook with
`jupyter notebook`
Make a new Notebook and run a new cell with
```lang=python
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
```
= Magic BAT file for installation =
```
@echo off
set installPath=D:\CARE-TF-GPU-N2V
echo %installPath%
python -m pip install --upgrade pip
pip install virtualenv
virtualenv -p python %installPath%
cmd /k "cd /D %installPath%\Scripts\ & activate & pip install tensorflow-gpu nodejs csbdeep tensorflow-gpu jupyterlab jupyter_tensorboard ipywidgets widgetsnbextension scikit-image & jupyter labextension install @jupyter-widgets/jupyterlab-manager &jupyter labextension install jupyterlab_tensorboard & jupyter kernelspec list
PAUSEInstalling TensorFlow with GPU Support for Windows in order to use CARE.
NOTE: This page has been updated to install JupyterLab and includes TensorBoard in the launcher
= Prerequisites =
# Get latest [[https://www.geforce.com/drivers|NVIDIA drivers]]
# Get [[https://developer.nvidia.com/cuda-10.0-download-archive|CUDA 10.0 Toolkit]]
# Get [[https://developer.nvidia.com/rdp/cudnn-download|cuDNN for CUDA 10.0]] (Needs you to login)
# Get [[https://www.python.org/downloads/|Python 3.7 x64]]
# Get [[https://nodejs.org/en/|NodeJS ]]
Install everything with defaults except Python. Mae sure to add Python to the PATH
Everything installs automatically except for cuDNN. For cuDNN, copy paste the contents of the zip file into
`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0`
After installing python, install pip and virtualenv.
Start `cmd` as an administrator and use
`python -m pip install --upgrade pip`
`pip install virtualenv`
= Setup =
== 1. Create the virtual environement wherever you want, for example `D:\CARE-TF-GPU` ==
`virtualenv -p python D:\CARE-TF-GPU\`
==2. Activate the virtual environement ==
```d:
cd CARE-TF-GPU
Scripts\activate
```
== 3. Install the required dependencies ==
`pip install tensorflow-gpu nodejs csbdeep tensorflow-gpu jupyterlab jupyter_tensorboard ipywidgets widgetsnbextension scikit-image`
== 4. Check that the `jupyter notebook` is loading the right kernel with ==
`jupyter kernelspec list`
And your output should look like this
```
Available kernels:
python3 d:\care-tf-gpu\share\jupyter\kernels\python3
```
== 5. Install the JupyterLab extensions ==
` jupyter labextension install @jupyter-widgets/jupyterlab-manager & jupyter labextension install jupyterlab_tensorboard `
= Test =
Launch Jupyter Notebook with
`jupyter lab`
Make a new Notebook and run a new cell with
```lang=python
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
```
If that works, then tensorflow is running for you.
= Magic BAT file for installation =
```
@echo off
set installPath=D:\CARE-TF-GPU
echo %installPath%
python -m pip install --upgrade pip
pip install virtualenv
virtualenv -p python %installPath%
cmd /k "cd /D %installPath%\Scripts\ & activate & pip install tensorflow-gpu nodejs csbdeep tensorflow-gpu jupyterlab jupyter_tensorboard ipywidgets widgetsnbextension scikit-image & jupyter labextension install @jupyter-widgets/jupyterlab-manager &jupyter labextension install jupyterlab_tensorboard & jupyter kernelspec list
PAUSE
```
= Magic BAT file for running (add as shortcut in desktop, for instance) =
```
@echo off
cmd /k "cd /d D:\CARE-TF-GPU & Scripts\activate & jupyter lab"
```