Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F100642963
gExtractCylindrical
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 1, 10:46
Size
13 KB
Mime Type
text/x-python
Expires
Mon, Feb 3, 10:46 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
24006024
Attached To
rGTOOLS Gtools
gExtractCylindrical
View Options
#!/usr/bin/python
'''
Extract and plot energy and mass values contained in the
output Gadget file called by default "energy.txt".
Yves Revaz
ven jun 9 10:43:59 CEST 2006
'''
from numpy import *
from pNbody import *
import string
import sys
import os
import copy as docopy
from pNbody.libutil import histogram
from pNbody import libgrid
from optparse import OptionParser
from Gtools import *
from Gtools import io
import Ptools as pt
def parse_options():
usage = "usage: %prog [options] file"
parser = OptionParser(usage=usage)
parser = pt.add_postscript_options(parser)
parser = pt.add_limits_options(parser)
parser = pt.add_log_options(parser)
parser = pt.add_ftype_options(parser)
parser = pt.add_reduc_options(parser)
#parser = pt.add_center_options(parser)
parser = pt.add_display_options(parser)
#parser = pt.add_select_options(parser)
parser = pt.add_cmd_options(parser)
parser = pt.add_info_options(parser)
parser = pt.add_units_options(parser)
parser.add_option("--Rmax",
action="store",
dest="Rmax",
type="float",
default = 50.,
help="max radius of bins",
metavar=" FLOAT")
parser.add_option("--nR",
action="store",
dest="nR",
type="int",
default = 64,
help="number of bins in R",
metavar=" INT")
parser.add_option("--nt",
action="store",
dest="nt",
type="int",
default = 64,
help="number of bins in t",
metavar=" INT")
parser.add_option("--eps",
action="store",
dest="eps",
type="float",
default = 0.28,
help="smoothing length",
metavar=" FLOAT")
parser.add_option("--nmin",
action="store",
dest="nmin",
type="float",
default = 32,
help="min number of particles in a cell to accept value",
metavar=" INT")
parser.add_option("--G",
action="store",
dest="G",
type="float",
default = 1.,
help="Gravitational constant value",
metavar=" FLOAT")
parser.add_option("--xmode",
action="store",
dest="xmode",
type="float",
default = 2.,
help="mode for X-Toomre parameter",
metavar=" FLOAT")
parser.add_option("--ErrTolTheta",
action="store",
dest="ErrTolTheta",
type="float",
default = 0.5,
help="Error tolerance theta",
metavar=" FLOAT")
parser.add_option("--AdaptativeSoftenning",
action="store_true",
dest="AdaptativeSoftenning",
default = False,
help="AdaptativeSoftenning")
parser.add_option("--ComputeLambdaJeans",
action="store_true",
dest="ComputeLambdaJeans",
default = False,
help="Compute LambdaJ eans")
parser.add_option("--statfile",
action="store",
type="string",
dest="statfile",
default = 'stat.dmp',
help="stat output file")
parser.add_option("--disk",
action="store",
type="string",
dest="disk",
default = "('gas','disk','stars')",
help="stat output file")
parser.add_option("--components",
action="store",
dest="components",
type="string",
default = "('gas','halo','disk','bulge','stars')",
help="list of components",
metavar=" TUPLE")
parser.add_option("--x",
action="store",
type="string",
dest="x",
default = 'R',
help="x")
parser.add_option("--y",
action="store",
type="string",
dest="y",
default = 'vct',
help="y")
parser.add_option("--mode",
action="store",
type="string",
dest="mode",
default = 'all',
help="mode")
parser.add_option("--forceComovingIntegrationOn",
action="store_true",
dest="forceComovingIntegrationOn",
default = False,
help="force the model to be in in comoving integration")
(options, args) = parser.parse_args()
if len(args) == 0:
print "you must specify a filename"
sys.exit(0)
files = args
return files,options
def get1dMeanFrom2dMap(mat_val,mat_num,nmin=32,axis=0):
m1 = sum(mat_num,axis)
m0 = sum(ones(mat_val.shape),axis)
vec_num = where((m0!=0),m1/m0,axis)
c = (mat_num>nmin)
m1 = sum(mat_val*c,axis)
m0 = sum(ones(mat_val.shape)*c,axis)
vec_sigma = where((m0!=0),m1/m0,0)
return vec_sigma
#######################################
# MakePlot
#######################################
def MakePlot(dirs,opt):
#######################################
# deal with mode
#######################################
if opt.mode=='all':
opt.ComputePotential = True
opt.ComputeSurfaceDensity = True
opt.ComputeDispertions = True
opt.ComputeStability = True
elif opt.mode=='Sden':
opt.ComputePotential = False
opt.ComputeSurfaceDensity = True
opt.ComputeDispertions = False
opt.ComputeStability = False
elif opt.mode=='velocities':
opt.ComputePotential = False
opt.ComputeSurfaceDensity = False
opt.ComputeDispertions = True
opt.ComputeStability = False
elif opt.mode=='stability':
opt.ComputePotential = True
opt.ComputeSurfaceDensity = True
opt.ComputeDispertions = True
opt.ComputeStability = True
#######################################
# LOOP
#######################################
# read files
for file in files:
######################################
# open file and apply option
######################################
nb = Nbody(file,ftype=opt.ftype)
################
# units
################
# define local units
unit_params = pt.do_units_options(opt)
nb.set_local_system_of_units(params=unit_params)
# define output units
# nb.ToPhysicalUnits()
if opt.forceComovingIntegrationOn:
nb.setComovingIntegrationOn()
################
# apply options
################
nb = pt.do_reduc_options(nb,opt)
nb = pt.do_cmd_options(nb,opt)
###############
# create total
###############
nbt = docopy.deepcopy(nb)
###############
# create disk
###############
nbd = docopy.deepcopy(nb)
if opt.disk!=None:
opt.disk = eval(opt.disk, dict(__builtins__=None))
print "disk = ",opt.disk
nbd = nbd.select(opt.disk)
######################################################
# compute the total density in the plane
if opt.ComputeLambdaJeans:
nbtt = docopy.deepcopy(nb)
nbtt.set_tpe(0)
# use a grid
# create cylindrical rt grid
rc = 1.
g = lambda r:log(r/rc+1.)
gm = lambda r:rc*(exp(r)-1.)
g = None;gm=None
Grt = libgrid.Cylindrical_2drt_Grid(rmin=0,rmax=opt.Rmax,nr=opt.nR,nt=opt.nt,z=0,g=g,gm=gm)
# radius
R,t = Grt.get_rt()
x = R
y = zeros(len(x))
z = zeros(len(x))
pos = transpose(array([x,y,z]))
pos = pos.astype(float32)
pos = Grt.get_Points()
nbg = Nbody(pos=pos)
rho, rsp = nbtt.ComputeDensityAndHsml(pos = pos)
Rho0 = Grt.get_MeanValMap(nbg,rho)
Rho0 = sum(Rho0,1)/opt.nt
######################################################
# here, we should loop over component
if opt.components != None:
opt.components = eval(opt.components, dict(__builtins__=None))
print "components = ",opt.components
for component in opt.components:
print "-----------------------------"
print "-- component = ",component
print "-----------------------------"
nb = nbt.select(component)
opt.statfile = "%s.dmp"%(component)
if nb.nbody>0:
###############
# other info
###############
#nb = pt.do_center_options(nb,opt)
nb = pt.do_info_options(nb,opt)
nb = pt.do_display_options(nb,opt)
######################################
# computes values
######################################
# create cylindrical rt grid
rc = 1.
g = lambda r:log(r/rc+1.)
gm = lambda r:rc*(exp(r)-1.)
g = None;gm=None
Grt = libgrid.Cylindrical_2drt_Grid(rmin=0,rmax=opt.Rmax,nr=opt.nR,nt=opt.nt,z=0,g=g,gm=gm)
# build the tree
if opt.ComputePotential:
print "ComputeTree"
nbt.getTree(force_computation=True,ErrTolTheta=opt.ErrTolTheta)
nb.getTree(force_computation=True,ErrTolTheta=opt.ErrTolTheta)
# radius
R,t = Grt.get_rt()
stats = {}
stats['nR'] = opt.nR
stats['nt'] = opt.nt
stats['Rmax'] = opt.Rmax
stats['eps'] = opt.eps
stats['ErrTolTheta'] = opt.ErrTolTheta
stats['AdaptativeSoftenning'] = opt.AdaptativeSoftenning
stats['xmode'] = opt.xmode
stats['nmin'] = opt.nmin
stats['G'] = opt.G
stats['R'] = R
stats['t'] = t
###################################
# Surface density
###################################
if opt.ComputeSurfaceDensity:
print "ComputeSurfaceDensity"
Sden = Grt.get_SurfaceDensityMap(nb)
Sden = sum(Sden,1)/opt.nt
Sdend = Grt.get_SurfaceDensityMap(nbd)
Sdend = sum(Sdend,1)/opt.nt
stats['Sden'] = Sden
stats['Sdend'] = Sdend
###################################
# rotation curve and frequencies
###################################
if opt.ComputePotential:
print "ComputePotential"
# radial acceleration (total)
Accx,Accy,Accz = Grt.get_AccelerationMap(nbt,eps=opt.eps,UseTree=True,AdaptativeSoftenning=opt.AdaptativeSoftenning)
# assuming cylindrical model
Ar = sqrt(Accx**2+Accy**2)
# general case
#x,y,z=Grt.get_xyz(offr=0.5)
#r = sqrt(x**2+y**2+z**2)
#Ar = -(Accx*x + Accy*y + Accz*z)/r
Ar = sum(Ar,1)/opt.nt
dPhit = Ar
d2Phit = libgrid.get_First_Derivative(dPhit,R)
kappat = libdisk.Kappa(R,dPhit,d2Phit)
omegat = libdisk.Omega(R,dPhit)
vct = libdisk.Vcirc(R,dPhit)
#nut = libdisk.Nu(z,Phit)
# radial acceleration (selection)
Accx,Accy,Accz = Grt.get_AccelerationMap(nb,eps=opt.eps,UseTree=True,AdaptativeSoftenning=opt.AdaptativeSoftenning)
Ar = sqrt(Accx**2+Accy**2)
Ar = sum(Ar,1)/opt.nt
dPhi = Ar
d2Phi = libgrid.get_First_Derivative(dPhi,R)
kappa = libdisk.Kappa(R,dPhi,d2Phi)
omega = libdisk.Omega(R,dPhi)
vc = libdisk.Vcirc(R,dPhi)
#nu = libdisk.Nu(z,Phi)
#stats['Phi'] = Phi
stats['dPhi'] = dPhi
stats['d2Phi'] = d2Phi
stats['kappa'] = kappa
stats['omega'] = omega
#stats['nu'] = nu
#stats['Phit'] = Phit
stats['dPhit'] = dPhit
stats['d2Phit'] = d2Phit
stats['kappat'] = kappat
stats['omegat'] = omegat
#stats['nut'] = nut
stats['vct'] = vct
stats['vc'] = vc
if opt.ComputeDispertions:
print "ComputeDispertions"
###################################
# number of points per cell
###################################
nn = Grt.get_NumberMap(nb)
nm = sum(nn,1)/opt.nt
###################################
# mean velocities
###################################
vr = Grt.get_MeanValMap(nb,nb.Vr())
vr = get1dMeanFrom2dMap(vr,nn,nmin=opt.nmin,axis=1)
vm = Grt.get_MeanValMap(nb,nb.Vt())
vm = get1dMeanFrom2dMap(vm,nn,nmin=opt.nmin,axis=1)
vz = Grt.get_MeanValMap(nb,nb.Vz())
vz = get1dMeanFrom2dMap(vz,nn,nmin=opt.nmin,axis=1)
if nb.u!=None:
u = Grt.get_MeanValMap(nb,nb.u)
u = get1dMeanFrom2dMap(u,nn,nmin=opt.nmin,axis=1)
else:
u = None
###################################
# velocity dispertions
###################################
sr = Grt.get_SigmaValMap(nb,nb.Vr())
sr = get1dMeanFrom2dMap(sr,nn,nmin=opt.nmin,axis=1)
sp = Grt.get_SigmaValMap(nb,nb.Vt())
sp = get1dMeanFrom2dMap(sp,nn,nmin=opt.nmin,axis=1)
sz = Grt.get_SigmaValMap(nb,nb.Vz())
sz = get1dMeanFrom2dMap(sz,nn,nmin=opt.nmin,axis=1)
stats['nn'] = nn
stats['nm'] = nm
stats['vr'] = vr
stats['vm'] = vm
stats['vz'] = vz
stats['sr'] = sr
stats['sp'] = sp
stats['sz'] = sz
stats['u'] = u
###################################
# Q,X,A
###################################
if opt.ComputeStability:
print "ComputeStability"
Q = libdisk.QToomre(opt.G,R,sr,kappat,Sdend)
X = libdisk.XToomre(opt.G,R,kappat,Sdend,opt.xmode)
A = libdisk.AAraki(sr,sz)
stats['Q'] = Q
stats['A'] = A
stats['X'] = X
# jeans length
if opt.ComputeLambdaJeans:
# sigma_R for Q=1
Q = 1.
srQ1 = 3.36*opt.G*Sdend/kappat * Q
stats['srQ1'] = srQ1
lambdaj = pi*srQ1**2/opt.G/Rho0
stats['lambdaj'] = lambdaj
###################################
# add units
###################################
stats['localsystem_of_units'] = nb.localsystem_of_units
###################################
# save output
###################################
pt.io.write_dmp(opt.statfile,stats)
if __name__ == '__main__':
files,opt = parse_options()
MakePlot(files,opt)
Event Timeline
Log In to Comment