Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F101416707
emit.js
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Feb 10, 06:09
Size
34 KB
Mime Type
text/x-java
Expires
Wed, Feb 12, 06:09 (1 d, 10 h)
Engine
blob
Format
Raw Data
Handle
24158031
Attached To
rOACCT Open Access Compliance Check Tool (OACCT)
emit.js
View Options
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import
assert
from
"assert"
;
import
*
as
leap
from
"./leap"
;
import
*
as
meta
from
"./meta"
;
import
*
as
util
from
"./util"
;
let
hasOwn
=
Object
.
prototype
.
hasOwnProperty
;
function
Emitter
(
contextId
)
{
assert
.
ok
(
this
instanceof
Emitter
);
util
.
getTypes
().
assertIdentifier
(
contextId
);
// Used to generate unique temporary names.
this
.
nextTempId
=
0
;
// In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
this
.
contextId
=
contextId
;
// An append-only list of Statements that grows each time this.emit is
// called.
this
.
listing
=
[];
// A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
this
.
marked
=
[
true
];
this
.
insertedLocs
=
new
Set
();
// The last location will be marked when this.getDispatchLoop is
// called.
this
.
finalLoc
=
this
.
loc
();
// A list of all leap.TryEntry statements emitted.
this
.
tryEntries
=
[];
// Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
this
.
leapManager
=
new
leap
.
LeapManager
(
this
);
}
let
Ep
=
Emitter
.
prototype
;
exports
.
Emitter
=
Emitter
;
// Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
Ep
.
loc
=
function
()
{
const
l
=
util
.
getTypes
().
numericLiteral
(
-
1
)
this
.
insertedLocs
.
add
(
l
);
return
l
;
}
Ep
.
getInsertedLocs
=
function
()
{
return
this
.
insertedLocs
;
}
Ep
.
getContextId
=
function
()
{
return
util
.
getTypes
().
clone
(
this
.
contextId
);
}
// Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep
.
mark
=
function
(
loc
)
{
util
.
getTypes
().
assertLiteral
(
loc
);
let
index
=
this
.
listing
.
length
;
if
(
loc
.
value
===
-
1
)
{
loc
.
value
=
index
;
}
else
{
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
assert
.
strictEqual
(
loc
.
value
,
index
);
}
this
.
marked
[
index
]
=
true
;
return
loc
;
};
Ep
.
emit
=
function
(
node
)
{
const
t
=
util
.
getTypes
();
if
(
t
.
isExpression
(
node
))
{
node
=
t
.
expressionStatement
(
node
);
}
t
.
assertStatement
(
node
);
this
.
listing
.
push
(
node
);
};
// Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep
.
emitAssign
=
function
(
lhs
,
rhs
)
{
this
.
emit
(
this
.
assign
(
lhs
,
rhs
));
return
lhs
;
};
// Shorthand for an assignment statement.
Ep
.
assign
=
function
(
lhs
,
rhs
)
{
const
t
=
util
.
getTypes
();
return
t
.
expressionStatement
(
t
.
assignmentExpression
(
"="
,
t
.
cloneDeep
(
lhs
),
rhs
));
};
// Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep
.
contextProperty
=
function
(
name
,
computed
)
{
const
t
=
util
.
getTypes
();
return
t
.
memberExpression
(
this
.
getContextId
(),
computed
?
t
.
stringLiteral
(
name
)
:
t
.
identifier
(
name
),
!!
computed
);
};
// Shorthand for setting context.rval and jumping to `context.stop()`.
Ep
.
stop
=
function
(
rval
)
{
if
(
rval
)
{
this
.
setReturnValue
(
rval
);
}
this
.
jump
(
this
.
finalLoc
);
};
Ep
.
setReturnValue
=
function
(
valuePath
)
{
util
.
getTypes
().
assertExpression
(
valuePath
.
value
);
this
.
emitAssign
(
this
.
contextProperty
(
"rval"
),
this
.
explodeExpression
(
valuePath
)
);
};
Ep
.
clearPendingException
=
function
(
tryLoc
,
assignee
)
{
const
t
=
util
.
getTypes
();
t
.
assertLiteral
(
tryLoc
);
let
catchCall
=
t
.
callExpression
(
this
.
contextProperty
(
"catch"
,
true
),
[
t
.
clone
(
tryLoc
)]
);
if
(
assignee
)
{
this
.
emitAssign
(
assignee
,
catchCall
);
}
else
{
this
.
emit
(
catchCall
);
}
};
// Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep
.
jump
=
function
(
toLoc
)
{
this
.
emitAssign
(
this
.
contextProperty
(
"next"
),
toLoc
);
this
.
emit
(
util
.
getTypes
().
breakStatement
());
};
// Conditional jump.
Ep
.
jumpIf
=
function
(
test
,
toLoc
)
{
const
t
=
util
.
getTypes
();
t
.
assertExpression
(
test
);
t
.
assertLiteral
(
toLoc
);
this
.
emit
(
t
.
ifStatement
(
test
,
t
.
blockStatement
([
this
.
assign
(
this
.
contextProperty
(
"next"
),
toLoc
),
t
.
breakStatement
()
])
));
};
// Conditional jump, with the condition negated.
Ep
.
jumpIfNot
=
function
(
test
,
toLoc
)
{
const
t
=
util
.
getTypes
();
t
.
assertExpression
(
test
);
t
.
assertLiteral
(
toLoc
);
let
negatedTest
;
if
(
t
.
isUnaryExpression
(
test
)
&&
test
.
operator
===
"!"
)
{
// Avoid double negation.
negatedTest
=
test
.
argument
;
}
else
{
negatedTest
=
t
.
unaryExpression
(
"!"
,
test
);
}
this
.
emit
(
t
.
ifStatement
(
negatedTest
,
t
.
blockStatement
([
this
.
assign
(
this
.
contextProperty
(
"next"
),
toLoc
),
t
.
breakStatement
()
])
));
};
// Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep
.
makeTempVar
=
function
()
{
return
this
.
contextProperty
(
"t"
+
this
.
nextTempId
++
);
};
Ep
.
getContextFunction
=
function
(
id
)
{
const
t
=
util
.
getTypes
();
return
t
.
functionExpression
(
id
||
null
/*Anonymous*/
,
[
this
.
getContextId
()],
t
.
blockStatement
([
this
.
getDispatchLoop
()]),
false
,
// Not a generator anymore!
false
// Nor an expression.
);
};
// Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep
.
getDispatchLoop
=
function
()
{
const
self
=
this
;
const
t
=
util
.
getTypes
();
let
cases
=
[];
let
current
;
// If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
let
alreadyEnded
=
false
;
self
.
listing
.
forEach
(
function
(
stmt
,
i
)
{
if
(
self
.
marked
.
hasOwnProperty
(
i
))
{
cases
.
push
(
t
.
switchCase
(
t
.
numericLiteral
(
i
),
current
=
[]));
alreadyEnded
=
false
;
}
if
(
!
alreadyEnded
)
{
current
.
push
(
stmt
);
if
(
t
.
isCompletionStatement
(
stmt
))
alreadyEnded
=
true
;
}
});
// Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this
.
finalLoc
.
value
=
this
.
listing
.
length
;
cases
.
push
(
t
.
switchCase
(
this
.
finalLoc
,
[
// Intentionally fall through to the "end" case...
]),
// So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
t
.
switchCase
(
t
.
stringLiteral
(
"end"
),
[
// This will check/clear both context.thrown and context.rval.
t
.
returnStatement
(
t
.
callExpression
(
this
.
contextProperty
(
"stop"
),
[])
)
])
);
return
t
.
whileStatement
(
t
.
numericLiteral
(
1
),
t
.
switchStatement
(
t
.
assignmentExpression
(
"="
,
this
.
contextProperty
(
"prev"
),
this
.
contextProperty
(
"next"
)
),
cases
)
);
};
Ep
.
getTryLocsList
=
function
()
{
if
(
this
.
tryEntries
.
length
===
0
)
{
// To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return
null
;
}
const
t
=
util
.
getTypes
();
let
lastLocValue
=
0
;
return
t
.
arrayExpression
(
this
.
tryEntries
.
map
(
function
(
tryEntry
)
{
let
thisLocValue
=
tryEntry
.
firstLoc
.
value
;
assert
.
ok
(
thisLocValue
>=
lastLocValue
,
"try entries out of order"
);
lastLocValue
=
thisLocValue
;
let
ce
=
tryEntry
.
catchEntry
;
let
fe
=
tryEntry
.
finallyEntry
;
let
locs
=
[
tryEntry
.
firstLoc
,
// The null here makes a hole in the array.
ce
?
ce
.
firstLoc
:
null
];
if
(
fe
)
{
locs
[
2
]
=
fe
.
firstLoc
;
locs
[
3
]
=
fe
.
afterLoc
;
}
return
t
.
arrayExpression
(
locs
.
map
(
loc
=>
loc
&&
t
.
clone
(
loc
)));
})
);
};
// All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep
.
explode
=
function
(
path
,
ignoreResult
)
{
const
t
=
util
.
getTypes
();
let
node
=
path
.
node
;
let
self
=
this
;
t
.
assertNode
(
node
);
if
(
t
.
isDeclaration
(
node
))
throw
getDeclError
(
node
);
if
(
t
.
isStatement
(
node
))
return
self
.
explodeStatement
(
path
);
if
(
t
.
isExpression
(
node
))
return
self
.
explodeExpression
(
path
,
ignoreResult
);
switch
(
node
.
type
)
{
case
"Program"
:
return
path
.
get
(
"body"
).
map
(
self
.
explodeStatement
,
self
);
case
"VariableDeclarator"
:
throw
getDeclError
(
node
);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case
"Property"
:
case
"SwitchCase"
:
case
"CatchClause"
:
throw
new
Error
(
node
.
type
+
" nodes should be handled by their parents"
);
default
:
throw
new
Error
(
"unknown Node of type "
+
JSON
.
stringify
(
node
.
type
));
}
};
function
getDeclError
(
node
)
{
return
new
Error
(
"all declarations should have been transformed into "
+
"assignments before the Exploder began its work: "
+
JSON
.
stringify
(
node
));
}
Ep
.
explodeStatement
=
function
(
path
,
labelId
)
{
const
t
=
util
.
getTypes
();
let
stmt
=
path
.
node
;
let
self
=
this
;
let
before
,
after
,
head
;
t
.
assertStatement
(
stmt
);
if
(
labelId
)
{
t
.
assertIdentifier
(
labelId
);
}
else
{
labelId
=
null
;
}
// Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if
(
t
.
isBlockStatement
(
stmt
))
{
path
.
get
(
"body"
).
forEach
(
function
(
path
)
{
self
.
explodeStatement
(
path
);
});
return
;
}
if
(
!
meta
.
containsLeap
(
stmt
))
{
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self
.
emit
(
stmt
);
return
;
}
switch
(
stmt
.
type
)
{
case
"ExpressionStatement"
:
self
.
explodeExpression
(
path
.
get
(
"expression"
),
true
);
break
;
case
"LabeledStatement"
:
after
=
this
.
loc
();
// Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self
.
leapManager
.
withEntry
(
new
leap
.
LabeledEntry
(
after
,
stmt
.
label
),
function
()
{
self
.
explodeStatement
(
path
.
get
(
"body"
),
stmt
.
label
);
}
);
self
.
mark
(
after
);
break
;
case
"WhileStatement"
:
before
=
this
.
loc
();
after
=
this
.
loc
();
self
.
mark
(
before
);
self
.
jumpIfNot
(
self
.
explodeExpression
(
path
.
get
(
"test"
)),
after
);
self
.
leapManager
.
withEntry
(
new
leap
.
LoopEntry
(
after
,
before
,
labelId
),
function
()
{
self
.
explodeStatement
(
path
.
get
(
"body"
));
}
);
self
.
jump
(
before
);
self
.
mark
(
after
);
break
;
case
"DoWhileStatement"
:
let
first
=
this
.
loc
();
let
test
=
this
.
loc
();
after
=
this
.
loc
();
self
.
mark
(
first
);
self
.
leapManager
.
withEntry
(
new
leap
.
LoopEntry
(
after
,
test
,
labelId
),
function
()
{
self
.
explode
(
path
.
get
(
"body"
));
}
);
self
.
mark
(
test
);
self
.
jumpIf
(
self
.
explodeExpression
(
path
.
get
(
"test"
)),
first
);
self
.
mark
(
after
);
break
;
case
"ForStatement"
:
head
=
this
.
loc
();
let
update
=
this
.
loc
();
after
=
this
.
loc
();
if
(
stmt
.
init
)
{
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self
.
explode
(
path
.
get
(
"init"
),
true
);
}
self
.
mark
(
head
);
if
(
stmt
.
test
)
{
self
.
jumpIfNot
(
self
.
explodeExpression
(
path
.
get
(
"test"
)),
after
);
}
else
{
// No test means continue unconditionally.
}
self
.
leapManager
.
withEntry
(
new
leap
.
LoopEntry
(
after
,
update
,
labelId
),
function
()
{
self
.
explodeStatement
(
path
.
get
(
"body"
));
}
);
self
.
mark
(
update
);
if
(
stmt
.
update
)
{
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self
.
explode
(
path
.
get
(
"update"
),
true
);
}
self
.
jump
(
head
);
self
.
mark
(
after
);
break
;
case
"TypeCastExpression"
:
return
self
.
explodeExpression
(
path
.
get
(
"expression"
));
case
"ForInStatement"
:
head
=
this
.
loc
();
after
=
this
.
loc
();
let
keyIterNextFn
=
self
.
makeTempVar
();
self
.
emitAssign
(
keyIterNextFn
,
t
.
callExpression
(
util
.
runtimeProperty
(
"keys"
),
[
self
.
explodeExpression
(
path
.
get
(
"right"
))]
)
);
self
.
mark
(
head
);
let
keyInfoTmpVar
=
self
.
makeTempVar
();
self
.
jumpIf
(
t
.
memberExpression
(
t
.
assignmentExpression
(
"="
,
keyInfoTmpVar
,
t
.
callExpression
(
t
.
cloneDeep
(
keyIterNextFn
),
[])
),
t
.
identifier
(
"done"
),
false
),
after
);
self
.
emitAssign
(
stmt
.
left
,
t
.
memberExpression
(
t
.
cloneDeep
(
keyInfoTmpVar
),
t
.
identifier
(
"value"
),
false
)
);
self
.
leapManager
.
withEntry
(
new
leap
.
LoopEntry
(
after
,
head
,
labelId
),
function
()
{
self
.
explodeStatement
(
path
.
get
(
"body"
));
}
);
self
.
jump
(
head
);
self
.
mark
(
after
);
break
;
case
"BreakStatement"
:
self
.
emitAbruptCompletion
({
type
:
"break"
,
target
:
self
.
leapManager
.
getBreakLoc
(
stmt
.
label
)
});
break
;
case
"ContinueStatement"
:
self
.
emitAbruptCompletion
({
type
:
"continue"
,
target
:
self
.
leapManager
.
getContinueLoc
(
stmt
.
label
)
});
break
;
case
"SwitchStatement"
:
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
let
disc
=
self
.
emitAssign
(
self
.
makeTempVar
(),
self
.
explodeExpression
(
path
.
get
(
"discriminant"
))
);
after
=
this
.
loc
();
let
defaultLoc
=
this
.
loc
();
let
condition
=
defaultLoc
;
let
caseLocs
=
[];
// If there are no cases, .cases might be undefined.
let
cases
=
stmt
.
cases
||
[];
for
(
let
i
=
cases
.
length
-
1
;
i
>=
0
;
--
i
)
{
let
c
=
cases
[
i
];
t
.
assertSwitchCase
(
c
);
if
(
c
.
test
)
{
condition
=
t
.
conditionalExpression
(
t
.
binaryExpression
(
"==="
,
t
.
cloneDeep
(
disc
),
c
.
test
),
caseLocs
[
i
]
=
this
.
loc
(),
condition
);
}
else
{
caseLocs
[
i
]
=
defaultLoc
;
}
}
let
discriminant
=
path
.
get
(
"discriminant"
);
util
.
replaceWithOrRemove
(
discriminant
,
condition
);
self
.
jump
(
self
.
explodeExpression
(
discriminant
));
self
.
leapManager
.
withEntry
(
new
leap
.
SwitchEntry
(
after
),
function
()
{
path
.
get
(
"cases"
).
forEach
(
function
(
casePath
)
{
let
i
=
casePath
.
key
;
self
.
mark
(
caseLocs
[
i
]);
casePath
.
get
(
"consequent"
).
forEach
(
function
(
path
)
{
self
.
explodeStatement
(
path
);
});
});
}
);
self
.
mark
(
after
);
if
(
defaultLoc
.
value
===
-
1
)
{
self
.
mark
(
defaultLoc
);
assert
.
strictEqual
(
after
.
value
,
defaultLoc
.
value
);
}
break
;
case
"IfStatement"
:
let
elseLoc
=
stmt
.
alternate
&&
this
.
loc
();
after
=
this
.
loc
();
self
.
jumpIfNot
(
self
.
explodeExpression
(
path
.
get
(
"test"
)),
elseLoc
||
after
);
self
.
explodeStatement
(
path
.
get
(
"consequent"
));
if
(
elseLoc
)
{
self
.
jump
(
after
);
self
.
mark
(
elseLoc
);
self
.
explodeStatement
(
path
.
get
(
"alternate"
));
}
self
.
mark
(
after
);
break
;
case
"ReturnStatement"
:
self
.
emitAbruptCompletion
({
type
:
"return"
,
value
:
self
.
explodeExpression
(
path
.
get
(
"argument"
))
});
break
;
case
"WithStatement"
:
throw
new
Error
(
"WithStatement not supported in generator functions."
);
case
"TryStatement"
:
after
=
this
.
loc
();
let
handler
=
stmt
.
handler
;
let
catchLoc
=
handler
&&
this
.
loc
();
let
catchEntry
=
catchLoc
&&
new
leap
.
CatchEntry
(
catchLoc
,
handler
.
param
);
let
finallyLoc
=
stmt
.
finalizer
&&
this
.
loc
();
let
finallyEntry
=
finallyLoc
&&
new
leap
.
FinallyEntry
(
finallyLoc
,
after
);
let
tryEntry
=
new
leap
.
TryEntry
(
self
.
getUnmarkedCurrentLoc
(),
catchEntry
,
finallyEntry
);
self
.
tryEntries
.
push
(
tryEntry
);
self
.
updateContextPrevLoc
(
tryEntry
.
firstLoc
);
self
.
leapManager
.
withEntry
(
tryEntry
,
function
()
{
self
.
explodeStatement
(
path
.
get
(
"block"
));
if
(
catchLoc
)
{
if
(
finallyLoc
)
{
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self
.
jump
(
finallyLoc
);
}
else
{
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self
.
jump
(
after
);
}
self
.
updateContextPrevLoc
(
self
.
mark
(
catchLoc
));
let
bodyPath
=
path
.
get
(
"handler.body"
);
let
safeParam
=
self
.
makeTempVar
();
self
.
clearPendingException
(
tryEntry
.
firstLoc
,
safeParam
);
bodyPath
.
traverse
(
catchParamVisitor
,
{
getSafeParam
:
()
=>
t
.
cloneDeep
(
safeParam
),
catchParamName
:
handler
.
param
.
name
});
self
.
leapManager
.
withEntry
(
catchEntry
,
function
()
{
self
.
explodeStatement
(
bodyPath
);
});
}
if
(
finallyLoc
)
{
self
.
updateContextPrevLoc
(
self
.
mark
(
finallyLoc
));
self
.
leapManager
.
withEntry
(
finallyEntry
,
function
()
{
self
.
explodeStatement
(
path
.
get
(
"finalizer"
));
});
self
.
emit
(
t
.
returnStatement
(
t
.
callExpression
(
self
.
contextProperty
(
"finish"
),
[
finallyEntry
.
firstLoc
]
)));
}
});
self
.
mark
(
after
);
break
;
case
"ThrowStatement"
:
self
.
emit
(
t
.
throwStatement
(
self
.
explodeExpression
(
path
.
get
(
"argument"
))
));
break
;
default
:
throw
new
Error
(
"unknown Statement of type "
+
JSON
.
stringify
(
stmt
.
type
));
}
};
let
catchParamVisitor
=
{
Identifier
:
function
(
path
,
state
)
{
if
(
path
.
node
.
name
===
state
.
catchParamName
&&
util
.
isReference
(
path
))
{
util
.
replaceWithOrRemove
(
path
,
state
.
getSafeParam
());
}
},
Scope
:
function
(
path
,
state
)
{
if
(
path
.
scope
.
hasOwnBinding
(
state
.
catchParamName
))
{
// Don't descend into nested scopes that shadow the catch
// parameter with their own declarations.
path
.
skip
();
}
}
};
Ep
.
emitAbruptCompletion
=
function
(
record
)
{
if
(
!
isValidCompletion
(
record
))
{
assert
.
ok
(
false
,
"invalid completion record: "
+
JSON
.
stringify
(
record
)
);
}
assert
.
notStrictEqual
(
record
.
type
,
"normal"
,
"normal completions are not abrupt"
);
const
t
=
util
.
getTypes
();
let
abruptArgs
=
[
t
.
stringLiteral
(
record
.
type
)];
if
(
record
.
type
===
"break"
||
record
.
type
===
"continue"
)
{
t
.
assertLiteral
(
record
.
target
);
abruptArgs
[
1
]
=
this
.
insertedLocs
.
has
(
record
.
target
)
?
record
.
target
:
t
.
cloneDeep
(
record
.
target
);
}
else
if
(
record
.
type
===
"return"
||
record
.
type
===
"throw"
)
{
if
(
record
.
value
)
{
t
.
assertExpression
(
record
.
value
);
abruptArgs
[
1
]
=
this
.
insertedLocs
.
has
(
record
.
value
)
?
record
.
value
:
t
.
cloneDeep
(
record
.
value
);
}
}
this
.
emit
(
t
.
returnStatement
(
t
.
callExpression
(
this
.
contextProperty
(
"abrupt"
),
abruptArgs
)
)
);
};
function
isValidCompletion
(
record
)
{
let
type
=
record
.
type
;
if
(
type
===
"normal"
)
{
return
!
hasOwn
.
call
(
record
,
"target"
);
}
if
(
type
===
"break"
||
type
===
"continue"
)
{
return
!
hasOwn
.
call
(
record
,
"value"
)
&&
util
.
getTypes
().
isLiteral
(
record
.
target
);
}
if
(
type
===
"return"
||
type
===
"throw"
)
{
return
hasOwn
.
call
(
record
,
"value"
)
&&
!
hasOwn
.
call
(
record
,
"target"
);
}
return
false
;
}
// Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep
.
getUnmarkedCurrentLoc
=
function
()
{
return
util
.
getTypes
().
numericLiteral
(
this
.
listing
.
length
);
};
// The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep
.
updateContextPrevLoc
=
function
(
loc
)
{
const
t
=
util
.
getTypes
();
if
(
loc
)
{
t
.
assertLiteral
(
loc
);
if
(
loc
.
value
===
-
1
)
{
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc
.
value
=
this
.
listing
.
length
;
}
else
{
// Otherwise assert that the location matches the current offset.
assert
.
strictEqual
(
loc
.
value
,
this
.
listing
.
length
);
}
}
else
{
loc
=
this
.
getUnmarkedCurrentLoc
();
}
// Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this
.
emitAssign
(
this
.
contextProperty
(
"prev"
),
loc
);
};
Ep
.
explodeExpression
=
function
(
path
,
ignoreResult
)
{
const
t
=
util
.
getTypes
();
let
expr
=
path
.
node
;
if
(
expr
)
{
t
.
assertExpression
(
expr
);
}
else
{
return
expr
;
}
let
self
=
this
;
let
result
;
// Used optionally by several cases below.
let
after
;
function
finish
(
expr
)
{
t
.
assertExpression
(
expr
);
if
(
ignoreResult
)
{
self
.
emit
(
expr
);
}
else
{
return
expr
;
}
}
// If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if
(
!
meta
.
containsLeap
(
expr
))
{
return
finish
(
expr
);
}
// If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
let
hasLeapingChildren
=
meta
.
containsLeap
.
onlyChildren
(
expr
);
// In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function
explodeViaTempVar
(
tempVar
,
childPath
,
ignoreChildResult
)
{
assert
.
ok
(
!
ignoreChildResult
||
!
tempVar
,
"Ignoring the result of a child expression but forcing it to "
+
"be assigned to a temporary variable?"
);
let
result
=
self
.
explodeExpression
(
childPath
,
ignoreChildResult
);
if
(
ignoreChildResult
)
{
// Side effects already emitted above.
}
else
if
(
tempVar
||
(
hasLeapingChildren
&&
!
t
.
isLiteral
(
result
)))
{
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result
=
self
.
emitAssign
(
tempVar
||
self
.
makeTempVar
(),
result
);
}
return
result
;
}
// If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch
(
expr
.
type
)
{
case
"MemberExpression"
:
return
finish
(
t
.
memberExpression
(
self
.
explodeExpression
(
path
.
get
(
"object"
)),
expr
.
computed
?
explodeViaTempVar
(
null
,
path
.
get
(
"property"
))
:
expr
.
property
,
expr
.
computed
));
case
"CallExpression"
:
let
calleePath
=
path
.
get
(
"callee"
);
let
argsPath
=
path
.
get
(
"arguments"
);
let
newCallee
;
let
newArgs
;
let
hasLeapingArgs
=
argsPath
.
some
(
argPath
=>
meta
.
containsLeap
(
argPath
.
node
)
);
let
injectFirstArg
=
null
;
if
(
t
.
isMemberExpression
(
calleePath
.
node
))
{
if
(
hasLeapingArgs
)
{
// If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
let
newObject
=
explodeViaTempVar
(
// Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self
.
makeTempVar
(),
calleePath
.
get
(
"object"
)
);
let
newProperty
=
calleePath
.
node
.
computed
?
explodeViaTempVar
(
null
,
calleePath
.
get
(
"property"
))
:
calleePath
.
node
.
property
;
injectFirstArg
=
newObject
;
newCallee
=
t
.
memberExpression
(
t
.
memberExpression
(
t
.
cloneDeep
(
newObject
),
newProperty
,
calleePath
.
node
.
computed
),
t
.
identifier
(
"call"
),
false
);
}
else
{
newCallee
=
self
.
explodeExpression
(
calleePath
);
}
}
else
{
newCallee
=
explodeViaTempVar
(
null
,
calleePath
);
if
(
t
.
isMemberExpression
(
newCallee
))
{
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee
=
t
.
sequenceExpression
([
t
.
numericLiteral
(
0
),
t
.
cloneDeep
(
newCallee
)
]);
}
}
if
(
hasLeapingArgs
)
{
newArgs
=
argsPath
.
map
(
argPath
=>
explodeViaTempVar
(
null
,
argPath
));
if
(
injectFirstArg
)
newArgs
.
unshift
(
injectFirstArg
);
newArgs
=
newArgs
.
map
(
arg
=>
t
.
cloneDeep
(
arg
));
}
else
{
newArgs
=
path
.
node
.
arguments
;
}
return
finish
(
t
.
callExpression
(
newCallee
,
newArgs
));
case
"NewExpression"
:
return
finish
(
t
.
newExpression
(
explodeViaTempVar
(
null
,
path
.
get
(
"callee"
)),
path
.
get
(
"arguments"
).
map
(
function
(
argPath
)
{
return
explodeViaTempVar
(
null
,
argPath
);
})
));
case
"ObjectExpression"
:
return
finish
(
t
.
objectExpression
(
path
.
get
(
"properties"
).
map
(
function
(
propPath
)
{
if
(
propPath
.
isObjectProperty
())
{
return
t
.
objectProperty
(
propPath
.
node
.
key
,
explodeViaTempVar
(
null
,
propPath
.
get
(
"value"
)),
propPath
.
node
.
computed
);
}
else
{
return
propPath
.
node
;
}
})
));
case
"ArrayExpression"
:
return
finish
(
t
.
arrayExpression
(
path
.
get
(
"elements"
).
map
(
function
(
elemPath
)
{
if
(
elemPath
.
isSpreadElement
())
{
return
t
.
spreadElement
(
explodeViaTempVar
(
null
,
elemPath
.
get
(
"argument"
))
);
}
else
{
return
explodeViaTempVar
(
null
,
elemPath
);
}
})
));
case
"SequenceExpression"
:
let
lastIndex
=
expr
.
expressions
.
length
-
1
;
path
.
get
(
"expressions"
).
forEach
(
function
(
exprPath
)
{
if
(
exprPath
.
key
===
lastIndex
)
{
result
=
self
.
explodeExpression
(
exprPath
,
ignoreResult
);
}
else
{
self
.
explodeExpression
(
exprPath
,
true
);
}
});
return
result
;
case
"LogicalExpression"
:
after
=
this
.
loc
();
if
(
!
ignoreResult
)
{
result
=
self
.
makeTempVar
();
}
let
left
=
explodeViaTempVar
(
result
,
path
.
get
(
"left"
));
if
(
expr
.
operator
===
"&&"
)
{
self
.
jumpIfNot
(
left
,
after
);
}
else
{
assert
.
strictEqual
(
expr
.
operator
,
"||"
);
self
.
jumpIf
(
left
,
after
);
}
explodeViaTempVar
(
result
,
path
.
get
(
"right"
),
ignoreResult
);
self
.
mark
(
after
);
return
result
;
case
"ConditionalExpression"
:
let
elseLoc
=
this
.
loc
();
after
=
this
.
loc
();
let
test
=
self
.
explodeExpression
(
path
.
get
(
"test"
));
self
.
jumpIfNot
(
test
,
elseLoc
);
if
(
!
ignoreResult
)
{
result
=
self
.
makeTempVar
();
}
explodeViaTempVar
(
result
,
path
.
get
(
"consequent"
),
ignoreResult
);
self
.
jump
(
after
);
self
.
mark
(
elseLoc
);
explodeViaTempVar
(
result
,
path
.
get
(
"alternate"
),
ignoreResult
);
self
.
mark
(
after
);
return
result
;
case
"UnaryExpression"
:
return
finish
(
t
.
unaryExpression
(
expr
.
operator
,
// Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self
.
explodeExpression
(
path
.
get
(
"argument"
)),
!!
expr
.
prefix
));
case
"BinaryExpression"
:
return
finish
(
t
.
binaryExpression
(
expr
.
operator
,
explodeViaTempVar
(
null
,
path
.
get
(
"left"
)),
explodeViaTempVar
(
null
,
path
.
get
(
"right"
))
));
case
"AssignmentExpression"
:
if
(
expr
.
operator
===
"="
)
{
// If this is a simple assignment, the left hand side does not need
// to be read before the right hand side is evaluated, so we can
// avoid the more complicated logic below.
return
finish
(
t
.
assignmentExpression
(
expr
.
operator
,
self
.
explodeExpression
(
path
.
get
(
"left"
)),
self
.
explodeExpression
(
path
.
get
(
"right"
))
));
}
const
lhs
=
self
.
explodeExpression
(
path
.
get
(
"left"
));
const
temp
=
self
.
emitAssign
(
self
.
makeTempVar
(),
lhs
);
// For example,
//
// x += yield y
//
// becomes
//
// context.t0 = x
// x = context.t0 += yield y
//
// so that the left-hand side expression is read before the yield.
// Fixes https://github.com/facebook/regenerator/issues/345.
return
finish
(
t
.
assignmentExpression
(
"="
,
t
.
cloneDeep
(
lhs
),
t
.
assignmentExpression
(
expr
.
operator
,
t
.
cloneDeep
(
temp
),
self
.
explodeExpression
(
path
.
get
(
"right"
))
)
));
case
"UpdateExpression"
:
return
finish
(
t
.
updateExpression
(
expr
.
operator
,
self
.
explodeExpression
(
path
.
get
(
"argument"
)),
expr
.
prefix
));
case
"YieldExpression"
:
after
=
this
.
loc
();
let
arg
=
expr
.
argument
&&
self
.
explodeExpression
(
path
.
get
(
"argument"
));
if
(
arg
&&
expr
.
delegate
)
{
let
result
=
self
.
makeTempVar
();
let
ret
=
t
.
returnStatement
(
t
.
callExpression
(
self
.
contextProperty
(
"delegateYield"
),
[
arg
,
t
.
stringLiteral
(
result
.
property
.
name
),
after
]
));
ret
.
loc
=
expr
.
loc
;
self
.
emit
(
ret
);
self
.
mark
(
after
);
return
result
;
}
self
.
emitAssign
(
self
.
contextProperty
(
"next"
),
after
);
let
ret
=
t
.
returnStatement
(
t
.
cloneDeep
(
arg
)
||
null
);
// Preserve the `yield` location so that source mappings for the statements
// link back to the yield properly.
ret
.
loc
=
expr
.
loc
;
self
.
emit
(
ret
);
self
.
mark
(
after
);
return
self
.
contextProperty
(
"sent"
);
default
:
throw
new
Error
(
"unknown Expression of type "
+
JSON
.
stringify
(
expr
.
type
));
}
};
Event Timeline
Log In to Comment