Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102270658
element_class_tetrahedron_10.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:22
Size
9 KB
Mime Type
text/x-c++
Expires
Thu, Feb 20, 23:22 (2 h, 46 m)
Engine
blob
Format
Raw Data
Handle
24320884
Attached To
rAKA akantu
element_class_tetrahedron_10.cc
View Options
/**
* @file element_class_tetrahedron_10.cc
* @author Peter Spijker <peter.spijker@epfl.ch>
* @date Thu Dec 1 10:28:28 2010
*
* @brief Specialization of the element_class class for the type _tetrahedron_10
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
* @section DESCRIPTION
*
* @verbatim
\zeta
^
|
(0,0,1)
x
|` .
| ` .
| ` .
| ` . (0,0.5,0.5)
| ` x.
| q4 o ` . \eta
| ` . -,
(0,0,0.5) x ` x (0.5,0,0.5) -
| ` x-(0,1,0)
| q3 o` - '
| (0,0.5,0) - ` '
| x- ` x (0.5,0.5,0)
| q1 o - o q2` '
| - ` '
| - ` '
x---------------x--------------` x-----> \xi
(0,0,0) (0.5,0,0) (1,0,0)
@endverbatim
*
* @subsection coords Nodes coordinates
*
* @f[
* \begin{array}{lll}
* \xi_{0} = 0 & \eta_{0} = 0 & \zeta_{0} = 0 \\
* \xi_{1} = 1 & \eta_{1} = 0 & \zeta_{1} = 0 \\
* \xi_{2} = 0 & \eta_{2} = 1 & \zeta_{2} = 0 \\
* \xi_{3} = 0 & \eta_{3} = 0 & \zeta_{3} = 1 \\
* \xi_{4} = 1/2 & \eta_{4} = 0 & \zeta_{4} = 0 \\
* \xi_{5} = 1/2 & \eta_{5} = 1/2 & \zeta_{5} = 0 \\
* \xi_{6} = 0 & \eta_{6} = 1/2 & \zeta_{6} = 0 \\
* \xi_{7} = 0 & \eta_{7} = 0 & \zeta_{7} = 1/2 \\
* \xi_{8} = 1/2 & \eta_{8} = 0 & \zeta_{8} = 1/2 \\
* \xi_{9} = 0 & \eta_{9} = 1/2 & \zeta_{9} = 1/2
* \end{array}
* @f]
*
* @subsection shapes Shape functions
* @f[
* \begin{array}{llll}
* N1 = (1 - \xi - \eta - \zeta) (1 - 2 \xi - 2 \eta - 2 \zeta)
* & \frac{\partial N1}{\partial \xi} = 4 \xi + 4 \eta + 4 \zeta - 3
* & \frac{\partial N1}{\partial \eta} = 4 \xi + 4 \eta + 4 \zeta - 3
* & \frac{\partial N1}{\partial \zeta} = 4 \xi + 4 \eta + 4 \zeta - 3 \\
* N2 = \xi (2 \xi - 1)
* & \frac{\partial N2}{\partial \xi} = 4 \xi - 1
* & \frac{\partial N2}{\partial \eta} = 0
* & \frac{\partial N2}{\partial \zeta} = 0 \\
* N3 = \eta (2 \eta - 1)
* & \frac{\partial N3}{\partial \xi} = 0
* & \frac{\partial N3}{\partial \eta} = 4 \eta - 1
* & \frac{\partial N3}{\partial \zeta} = 0 \\
* N4 = \zeta (2 \zeta - 1)
* & \frac{\partial N4}{\partial \xi} = 0
* & \frac{\partial N4}{\partial \eta} = 0
* & \frac{\partial N4}{\partial \zeta} = 4 \zeta - 1 \\
* N5 = 4 \xi (1 - \xi - \eta - \zeta)
* & \frac{\partial N5}{\partial \xi} = 4 - 8 \xi - 4 \eta - 4 \zeta
* & \frac{\partial N5}{\partial \eta} = -4 \xi
* & \frac{\partial N5}{\partial \zeta} = -4 \xi \\
* N6 = 4 \xi \eta
* & \frac{\partial N6}{\partial \xi} = 4 \eta
* & \frac{\partial N6}{\partial \eta} = 4 \xi
* & \frac{\partial N6}{\partial \zeta} = 0 \\
* N7 = 4 \eta (1 - \xi - \eta - \zeta)
* & \frac{\partial N7}{\partial \xi} = -4 \eta
* & \frac{\partial N7}{\partial \eta} = 4 - 4 \xi - 8 \eta - 4 \zeta
* & \frac{\partial N7}{\partial \zeta} = -4 \eta \\
* N8 = 4 \zeta (1 - \xi - \eta - \zeta)
* & \frac{\partial N8}{\partial \xi} = -4 \zeta
* & \frac{\partial N8}{\partial \eta} = -4 \zeta
* & \frac{\partial N8}{\partial \zeta} = 4 - 4 \xi - 4 \eta - 8 \zeta \\
* N9 = 4 \zeta \xi
* & \frac{\partial N9}{\partial \xi} = 4 \zeta
* & \frac{\partial N9}{\partial \eta} = 0
* & \frac{\partial N9}{\partial \zeta} = 4 \xi \\
* N10 = 4 \eta \zeta
* & \frac{\partial N10}{\partial \xi} = 0
* & \frac{\partial N10}{\partial \eta} = 4 \zeta
* & \frac{\partial N10}{\partial \zeta} = 4 \eta \\
* \end{array}
* @f]
*
* @subsection quad_points Position of quadrature points
* @f[
* a = \frac{5 - \sqrt{5}}{20}\\
* b = \frac{5 + 3 \sqrt{5}}{20}
* \begin{array}{lll}
* \xi_{q_0} = a & \eta_{q_0} = a & \zeta_{q_0} = a \\
* \xi_{q_1} = b & \eta_{q_1} = a & \zeta_{q_1} = a \\
* \xi_{q_2} = a & \eta_{q_2} = b & \zeta_{q_2} = a \\
* \xi_{q_3} = a & \eta_{q_3} = a & \zeta_{q_3} = b
* \end{array}
* @f]
*/
/* -------------------------------------------------------------------------- */
template
<>
UInt
ElementClass
<
_tetrahedron_10
>::
nb_nodes_per_element
;
template
<>
UInt
ElementClass
<
_tetrahedron_10
>::
nb_quadrature_points
;
template
<>
UInt
ElementClass
<
_tetrahedron_10
>::
spatial_dimension
;
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ElementClass
<
_tetrahedron_10
>::
computeShapes
(
const
Real
*
natural_coords
,
Real
*
shapes
){
/// Natural coordinates
Real
xi
=
natural_coords
[
0
];
Real
eta
=
natural_coords
[
1
];
Real
zeta
=
natural_coords
[
2
];
Real
sum
=
xi
+
eta
+
zeta
;
Real
c0
=
1
-
sum
;
Real
c1
=
1
-
2
*
sum
;
Real
c2
=
2
*
xi
-
1
;
Real
c3
=
2
*
eta
-
1
;
Real
c4
=
2
*
zeta
-
1
;
/// Shape functions
shapes
[
0
]
=
c0
*
c1
;
shapes
[
1
]
=
xi
*
c2
;
shapes
[
2
]
=
eta
*
c3
;
shapes
[
3
]
=
zeta
*
c4
;
shapes
[
4
]
=
4
*
xi
*
c0
;
shapes
[
5
]
=
4
*
xi
*
eta
;
shapes
[
6
]
=
4
*
eta
*
c0
;
shapes
[
7
]
=
4
*
zeta
*
c0
;
shapes
[
8
]
=
4
*
xi
*
zeta
;
shapes
[
9
]
=
4
*
eta
*
zeta
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ElementClass
<
_tetrahedron_10
>::
computeDNDS
(
__attribute__
((
unused
))
const
Real
*
natural_coords
,
Real
*
dnds
)
{
/**
* @f[
* dnds = \left(
* \begin{array}{cccccccccc}
* \frac{\partial N1}{\partial \xi} & \frac{\partial N2}{\partial \xi}
* & \frac{\partial N3}{\partial \xi} & \frac{\partial N4}{\partial \xi}
* & \frac{\partial N5}{\partial \xi} & \frac{\partial N6}{\partial \xi}
* & \frac{\partial N7}{\partial \xi} & \frac{\partial N8}{\partial \xi}
* & \frac{\partial N9}{\partial \xi} & \frac{\partial N10}{\partial \xi} \\
* \frac{\partial N1}{\partial \eta} & \frac{\partial N2}{\partial \eta}
* & \frac{\partial N3}{\partial \eta} & \frac{\partial N4}{\partial \eta}
* & \frac{\partial N5}{\partial \eta} & \frac{\partial N6}{\partial \eta}
* & \frac{\partial N7}{\partial \eta} & \frac{\partial N8}{\partial \eta}
* & \frac{\partial N9}{\partial \eta} & \frac{\partial N10}{\partial \eta} \\
* \frac{\partial N1}{\partial \zeta} & \frac{\partial N2}{\partial \zeta}
* & \frac{\partial N3}{\partial \zeta} & \frac{\partial N4}{\partial \zeta}
* & \frac{\partial N5}{\partial \zeta} & \frac{\partial N6}{\partial \zeta}
* & \frac{\partial N7}{\partial \zeta} & \frac{\partial N8}{\partial \zeta}
* & \frac{\partial N9}{\partial \zeta} & \frac{\partial N10}{\partial \zeta}
* \end{array}
* \right)
* @f]
*/
/// Natural coordinates
Real
xi
=
natural_coords
[
0
];
Real
eta
=
natural_coords
[
1
];
Real
zeta
=
natural_coords
[
2
];
Real
sum
=
xi
+
eta
+
zeta
;
/// dN/dxi
dnds
[
0
]
=
4
*
sum
-
3
;
dnds
[
1
]
=
4
*
xi
-
1
;
dnds
[
2
]
=
0
;
dnds
[
3
]
=
0
;
dnds
[
4
]
=
4
*
(
1
-
sum
-
xi
);
dnds
[
5
]
=
4
*
eta
;
dnds
[
6
]
=
-
4
*
eta
;
dnds
[
7
]
=
-
4
*
zeta
;
dnds
[
8
]
=
4
*
zeta
;
dnds
[
9
]
=
0
;
/// dN/deta
dnds
[
10
]
=
4
*
sum
-
3
;
dnds
[
11
]
=
0
;
dnds
[
12
]
=
4
*
eta
-
1
;
dnds
[
13
]
=
0
;
dnds
[
14
]
=
-
4
*
xi
;
dnds
[
15
]
=
4
*
xi
;
dnds
[
16
]
=
4
*
(
1
-
sum
-
eta
);
dnds
[
17
]
=
-
4
*
zeta
;
dnds
[
18
]
=
0
;
dnds
[
19
]
=
4
*
zeta
;
/// dN/dzeta
dnds
[
20
]
=
4
*
sum
-
3
;
dnds
[
21
]
=
0
;
dnds
[
22
]
=
0
;
dnds
[
23
]
=
4
*
zeta
-
1
;
dnds
[
24
]
=
-
4
*
xi
;
dnds
[
25
]
=
0
;
dnds
[
26
]
=
-
4
*
eta
;
dnds
[
27
]
=
4
*
(
1
-
sum
-
zeta
);
dnds
[
28
]
=
4
*
xi
;
dnds
[
29
]
=
4
*
eta
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ElementClass
<
_tetrahedron_10
>::
computeJacobian
(
const
Real
*
dxds
,
const
UInt
dimension
,
Real
&
jac
)
{
if
(
dimension
==
spatial_dimension
){
Real
weight
=
1.
/
24.
;
Real
det_dxds
=
Math
::
det3
(
dxds
);
jac
=
det_dxds
*
weight
;
}
else
{
AKANTU_DEBUG_ERROR
(
"to be implemented"
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
inline
Real
ElementClass
<
_tetrahedron_10
>::
getInradius
(
const
Real
*
coord
)
{
// Only take the four corner tetrahedra
UInt
tetrahedra
[
4
][
4
]
=
{
{
0
,
4
,
6
,
7
},
{
4
,
1
,
5
,
8
},
{
6
,
5
,
2
,
9
},
{
7
,
8
,
9
,
3
}
};
Real
inradius
=
std
::
numeric_limits
<
Real
>::
max
();
for
(
UInt
t
=
0
;
t
<
4
;
t
++
)
{
Real
ir
=
Math
::
tetrahedron_inradius
(
coord
+
tetrahedra
[
t
][
0
]
*
spatial_dimension
,
coord
+
tetrahedra
[
t
][
1
]
*
spatial_dimension
,
coord
+
tetrahedra
[
t
][
2
]
*
spatial_dimension
,
coord
+
tetrahedra
[
t
][
3
]
*
spatial_dimension
);
inradius
=
ir
<
inradius
?
ir
:
inradius
;
}
return
inradius
;
}
Event Timeline
Log In to Comment