Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102344934
pair_brownian_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 19, 17:44
Size
10 KB
Mime Type
text/x-c++
Expires
Fri, Feb 21, 17:44 (8 h, 44 m)
Engine
blob
Format
Raw Data
Handle
24335316
Attached To
rLAMMPS lammps
pair_brownian_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "math.h"
#include "pair_brownian_omp.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "force.h"
#include "input.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "update.h"
#include "variable.h"
#include "random_mars.h"
#include "math_const.h"
#include "math_special.h"
#include "fix_wall.h"
#include "suffix.h"
using namespace LAMMPS_NS;
using namespace MathConst;
using namespace MathSpecial;
#define EPSILON 1.0e-10
// same as fix_wall.cpp
enum{EDGE,CONSTANT,VARIABLE};
/* ---------------------------------------------------------------------- */
PairBrownianOMP::PairBrownianOMP(LAMMPS *lmp) :
PairBrownian(lmp), ThrOMP(lmp, THR_PAIR)
{
suffix_flag |= Suffix::OMP;
respa_enable = 0;
random_thr = NULL;
}
/* ---------------------------------------------------------------------- */
PairBrownianOMP::~PairBrownianOMP()
{
if (random_thr) {
for (int i=1; i < comm->nthreads; ++i)
delete random_thr[i];
delete[] random_thr;
random_thr = NULL;
}
}
/* ---------------------------------------------------------------------- */
void PairBrownianOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = vflag_fdotr = 0;
const int nall = atom->nlocal + atom->nghost;
const int nthreads = comm->nthreads;
const int inum = list->inum;
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
// in the volume fraction as a result of fix deform or moving walls
double dims[3], wallcoord;
if (flagVF) // Flag for volume fraction corrections
if (flagdeform || flagwall == 2){ // Possible changes in volume fraction
if (flagdeform && !flagwall)
for (int j = 0; j < 3; j++)
dims[j] = domain->prd[j];
else if (flagwall == 2 || (flagdeform && flagwall == 1)){
double wallhi[3], walllo[3];
for (int j = 0; j < 3; j++){
wallhi[j] = domain->prd[j];
walllo[j] = 0;
}
for (int m = 0; m < wallfix->nwall; m++){
int dim = wallfix->wallwhich[m] / 2;
int side = wallfix->wallwhich[m] % 2;
if (wallfix->xstyle[m] == VARIABLE){
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
}
else wallcoord = wallfix->coord0[m];
if (side == 0) walllo[dim] = wallcoord;
else wallhi[dim] = wallcoord;
}
for (int j = 0; j < 3; j++)
dims[j] = wallhi[j] - walllo[j];
}
double vol_T = dims[0]*dims[1]*dims[2];
double vol_f = vol_P/vol_T;
if (flaglog == 0) {
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
RT0 = 8*MY_PI*mu*cube(rad);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
} else {
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
RT0 = 8*MY_PI*mu*cube(rad)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
}
}
if (!random_thr)
random_thr = new RanMars*[nthreads];
// to ensure full compatibility with the serial Brownian style
// we use is random number generator instance for thread 0
random_thr[0] = random;
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int ifrom, ito, tid;
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
ThrData *thr = fix->get_thr(tid);
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
// generate a random number generator instance for
// all threads != 0. make sure we use unique seeds.
if (random_thr && tid > 0)
random_thr[tid] = new RanMars(Pair::lmp, seed + comm->me
+ comm->nprocs*tid);
if (flaglog) {
if (evflag) {
if (force->newton_pair) eval<1,1,1>(ifrom, ito, thr);
else eval<1,1,0>(ifrom, ito, thr);
} else {
if (force->newton_pair) eval<1,0,1>(ifrom, ito, thr);
else eval<1,0,0>(ifrom, ito, thr);
}
} else {
if (evflag) {
if (force->newton_pair) eval<0,1,1>(ifrom, ito, thr);
else eval<0,1,0>(ifrom, ito, thr);
} else {
if (force->newton_pair) eval<0,0,1>(ifrom, ito, thr);
else eval<0,0,0>(ifrom, ito, thr);
}
}
reduce_thr(this, eflag, vflag, thr);
} // end of omp parallel region
}
template <int FLAGLOG, int EVFLAG, int NEWTON_PAIR>
void PairBrownianOMP::eval(int iifrom, int iito, ThrData * const thr)
{
int i,j,ii,jj,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
double rsq,r,h_sep,radi;
int *ilist,*jlist,*numneigh,**firstneigh;
const double * const * const x = atom->x;
double * const * const f = thr->get_f();
double * const * const torque = thr->get_torque();
const double * const radius = atom->radius;
const int * const type = atom->type;
const int nlocal = atom->nlocal;
RanMars &rng = *random_thr[thr->get_tid()];
double vxmu2f = force->vxmu2f;
double randr;
double prethermostat;
double xl[3],a_sq,a_sh,a_pu,Fbmag;
double p1[3],p2[3],p3[3];
int overlaps = 0;
// scale factor for Brownian moments
prethermostat = sqrt(24.0*force->boltz*t_target/update->dt);
prethermostat *= sqrt(force->vxmu2f/force->ftm2v/force->mvv2e);
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
radi = radius[i];
jlist = firstneigh[i];
jnum = numneigh[i];
// FLD contribution to force and torque due to isotropic terms
if (flagfld) {
f[i][0] += prethermostat*sqrt(R0)*(rng.uniform()-0.5);
f[i][1] += prethermostat*sqrt(R0)*(rng.uniform()-0.5);
f[i][2] += prethermostat*sqrt(R0)*(rng.uniform()-0.5);
if (FLAGLOG) {
torque[i][0] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5);
torque[i][1] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5);
torque[i][2] += prethermostat*sqrt(RT0)*(rng.uniform()-0.5);
}
}
if (!flagHI) continue;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
// scalar resistances a_sq and a_sh
h_sep = r - 2.0*radi;
// check for overlaps
if (h_sep < 0.0) overlaps++;
// if less than minimum gap, use minimum gap instead
if (r < cut_inner[itype][jtype])
h_sep = cut_inner[itype][jtype] - 2.0*radi;
// scale h_sep by radi
h_sep = h_sep/radi;
// scalar resistances
if (FLAGLOG) {
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep));
a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep));
a_pu = 8.0*MY_PI*mu*cube(radi)*(3.0/160.0*log(1.0/h_sep));
} else
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep);
// generate the Pairwise Brownian Force: a_sq
Fbmag = prethermostat*sqrt(a_sq);
// generate a random number
randr = rng.uniform()-0.5;
// contribution due to Brownian motion
fx = Fbmag*randr*delx/r;
fy = Fbmag*randr*dely/r;
fz = Fbmag*randr*delz/r;
// add terms due to a_sh
if (FLAGLOG) {
// generate two orthogonal vectors to the line of centers
p1[0] = delx/r; p1[1] = dely/r; p1[2] = delz/r;
set_3_orthogonal_vectors(p1,p2,p3);
// magnitude
Fbmag = prethermostat*sqrt(a_sh);
// force in each of the two directions
randr = rng.uniform()-0.5;
fx += Fbmag*randr*p2[0];
fy += Fbmag*randr*p2[1];
fz += Fbmag*randr*p2[2];
randr = rng.uniform()-0.5;
fx += Fbmag*randr*p3[0];
fy += Fbmag*randr*p3[1];
fz += Fbmag*randr*p3[2];
}
// scale forces to appropriate units
fx = vxmu2f*fx;
fy = vxmu2f*fy;
fz = vxmu2f*fz;
// sum to total force
f[i][0] -= fx;
f[i][1] -= fy;
f[i][2] -= fz;
if (NEWTON_PAIR || j < nlocal) {
//randr = rng.uniform()-0.5;
//fx = Fbmag*randr*delx/r;
//fy = Fbmag*randr*dely/r;
//fz = Fbmag*randr*delz/r;
f[j][0] += fx;
f[j][1] += fy;
f[j][2] += fz;
}
// torque due to the Brownian Force
if (FLAGLOG) {
// location of the point of closest approach on I from its center
xl[0] = -delx/r*radi;
xl[1] = -dely/r*radi;
xl[2] = -delz/r*radi;
// torque = xl_cross_F
tx = xl[1]*fz - xl[2]*fy;
ty = xl[2]*fx - xl[0]*fz;
tz = xl[0]*fy - xl[1]*fx;
// torque is same on both particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
if (NEWTON_PAIR || j < nlocal) {
torque[j][0] -= tx;
torque[j][1] -= ty;
torque[j][2] -= tz;
}
// torque due to a_pu
Fbmag = prethermostat*sqrt(a_pu);
// force in each direction
randr = rng.uniform()-0.5;
tx = Fbmag*randr*p2[0];
ty = Fbmag*randr*p2[1];
tz = Fbmag*randr*p2[2];
randr = rng.uniform()-0.5;
tx += Fbmag*randr*p3[0];
ty += Fbmag*randr*p3[1];
tz += Fbmag*randr*p3[2];
// torque has opposite sign on two particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
if (NEWTON_PAIR || j < nlocal) {
torque[j][0] += tx;
torque[j][1] += ty;
torque[j][2] += tz;
}
}
if (EVFLAG) ev_tally_xyz(i,j,nlocal,NEWTON_PAIR,
0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
}
}
}
}
/* ---------------------------------------------------------------------- */
double PairBrownianOMP::memory_usage()
{
double bytes = memory_usage_thr();
bytes += PairBrownian::memory_usage();
bytes += comm->nthreads * sizeof(RanMars*);
bytes += comm->nthreads * sizeof(RanMars);
return bytes;
}
Event Timeline
Log In to Comment