Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102456535
hessenberg.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:33
Size
2 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:33 (22 h, 41 m)
Engine
blob
Format
Raw Data
Handle
24323926
Attached To
rDLMA Diffusion limited mixed aggregation
hessenberg.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Eigenvalues>
template
<
typename
Scalar
,
int
Size
>
void
hessenberg
(
int
size
=
Size
)
{
typedef
Matrix
<
Scalar
,
Size
,
Size
>
MatrixType
;
// Test basic functionality: A = U H U* and H is Hessenberg
for
(
int
counter
=
0
;
counter
<
g_repeat
;
++
counter
)
{
MatrixType
m
=
MatrixType
::
Random
(
size
,
size
);
HessenbergDecomposition
<
MatrixType
>
hess
(
m
);
MatrixType
Q
=
hess
.
matrixQ
();
MatrixType
H
=
hess
.
matrixH
();
VERIFY_IS_APPROX
(
m
,
Q
*
H
*
Q
.
adjoint
());
for
(
int
row
=
2
;
row
<
size
;
++
row
)
{
for
(
int
col
=
0
;
col
<
row
-
1
;
++
col
)
{
VERIFY
(
H
(
row
,
col
)
==
(
typename
MatrixType
::
Scalar
)
0
);
}
}
}
// Test whether compute() and constructor returns same result
MatrixType
A
=
MatrixType
::
Random
(
size
,
size
);
HessenbergDecomposition
<
MatrixType
>
cs1
;
cs1
.
compute
(
A
);
HessenbergDecomposition
<
MatrixType
>
cs2
(
A
);
VERIFY_IS_EQUAL
(
cs1
.
matrixH
().
eval
(),
cs2
.
matrixH
().
eval
());
MatrixType
cs1Q
=
cs1
.
matrixQ
();
MatrixType
cs2Q
=
cs2
.
matrixQ
();
VERIFY_IS_EQUAL
(
cs1Q
,
cs2Q
);
// Test assertions for when used uninitialized
HessenbergDecomposition
<
MatrixType
>
hessUninitialized
;
VERIFY_RAISES_ASSERT
(
hessUninitialized
.
matrixH
()
);
VERIFY_RAISES_ASSERT
(
hessUninitialized
.
matrixQ
()
);
VERIFY_RAISES_ASSERT
(
hessUninitialized
.
householderCoefficients
()
);
VERIFY_RAISES_ASSERT
(
hessUninitialized
.
packedMatrix
()
);
// TODO: Add tests for packedMatrix() and householderCoefficients()
}
EIGEN_DECLARE_TEST
(
hessenberg
)
{
CALL_SUBTEST_1
((
hessenberg
<
std
::
complex
<
double
>
,
1
>
()
));
CALL_SUBTEST_2
((
hessenberg
<
std
::
complex
<
double
>
,
2
>
()
));
CALL_SUBTEST_3
((
hessenberg
<
std
::
complex
<
float
>
,
4
>
()
));
CALL_SUBTEST_4
((
hessenberg
<
float
,
Dynamic
>
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
))
));
CALL_SUBTEST_5
((
hessenberg
<
std
::
complex
<
double
>
,
Dynamic
>
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
))
));
// Test problem size constructors
CALL_SUBTEST_6
(
HessenbergDecomposition
<
MatrixXf
>
(
10
));
}
Event Timeline
Log In to Comment