Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102457630
eigensolver_generic.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:49
Size
9 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:49 (22 h, 17 m)
Engine
blob
Format
Raw Data
Handle
24324246
Attached To
rDLMA Diffusion limited mixed aggregation
eigensolver_generic.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template
<
typename
EigType
,
typename
MatType
>
void
check_eigensolver_for_given_mat
(
const
EigType
&
eig
,
const
MatType
&
a
)
{
typedef
typename
NumTraits
<
typename
MatType
::
Scalar
>::
Real
RealScalar
;
typedef
Matrix
<
RealScalar
,
MatType
::
RowsAtCompileTime
,
1
>
RealVectorType
;
typedef
typename
std
::
complex
<
RealScalar
>
Complex
;
Index
n
=
a
.
rows
();
VERIFY_IS_EQUAL
(
eig
.
info
(),
Success
);
VERIFY_IS_APPROX
(
a
*
eig
.
pseudoEigenvectors
(),
eig
.
pseudoEigenvectors
()
*
eig
.
pseudoEigenvalueMatrix
());
VERIFY_IS_APPROX
(
a
.
template
cast
<
Complex
>
()
*
eig
.
eigenvectors
(),
eig
.
eigenvectors
()
*
eig
.
eigenvalues
().
asDiagonal
());
VERIFY_IS_APPROX
(
eig
.
eigenvectors
().
colwise
().
norm
(),
RealVectorType
::
Ones
(
n
).
transpose
());
VERIFY_IS_APPROX
(
a
.
eigenvalues
(),
eig
.
eigenvalues
());
}
template
<
typename
MatrixType
>
void
eigensolver
(
const
MatrixType
&
m
)
{
/* this test covers the following files:
EigenSolver.h
*/
Index
rows
=
m
.
rows
();
Index
cols
=
m
.
cols
();
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
NumTraits
<
Scalar
>::
Real
RealScalar
;
typedef
typename
std
::
complex
<
RealScalar
>
Complex
;
MatrixType
a
=
MatrixType
::
Random
(
rows
,
cols
);
MatrixType
a1
=
MatrixType
::
Random
(
rows
,
cols
);
MatrixType
symmA
=
a
.
adjoint
()
*
a
+
a1
.
adjoint
()
*
a1
;
EigenSolver
<
MatrixType
>
ei0
(
symmA
);
VERIFY_IS_EQUAL
(
ei0
.
info
(),
Success
);
VERIFY_IS_APPROX
(
symmA
*
ei0
.
pseudoEigenvectors
(),
ei0
.
pseudoEigenvectors
()
*
ei0
.
pseudoEigenvalueMatrix
());
VERIFY_IS_APPROX
((
symmA
.
template
cast
<
Complex
>
())
*
(
ei0
.
pseudoEigenvectors
().
template
cast
<
Complex
>
()),
(
ei0
.
pseudoEigenvectors
().
template
cast
<
Complex
>
())
*
(
ei0
.
eigenvalues
().
asDiagonal
()));
EigenSolver
<
MatrixType
>
ei1
(
a
);
CALL_SUBTEST
(
check_eigensolver_for_given_mat
(
ei1
,
a
)
);
EigenSolver
<
MatrixType
>
ei2
;
ei2
.
setMaxIterations
(
RealSchur
<
MatrixType
>::
m_maxIterationsPerRow
*
rows
).
compute
(
a
);
VERIFY_IS_EQUAL
(
ei2
.
info
(),
Success
);
VERIFY_IS_EQUAL
(
ei2
.
eigenvectors
(),
ei1
.
eigenvectors
());
VERIFY_IS_EQUAL
(
ei2
.
eigenvalues
(),
ei1
.
eigenvalues
());
if
(
rows
>
2
)
{
ei2
.
setMaxIterations
(
1
).
compute
(
a
);
VERIFY_IS_EQUAL
(
ei2
.
info
(),
NoConvergence
);
VERIFY_IS_EQUAL
(
ei2
.
getMaxIterations
(),
1
);
}
EigenSolver
<
MatrixType
>
eiNoEivecs
(
a
,
false
);
VERIFY_IS_EQUAL
(
eiNoEivecs
.
info
(),
Success
);
VERIFY_IS_APPROX
(
ei1
.
eigenvalues
(),
eiNoEivecs
.
eigenvalues
());
VERIFY_IS_APPROX
(
ei1
.
pseudoEigenvalueMatrix
(),
eiNoEivecs
.
pseudoEigenvalueMatrix
());
MatrixType
id
=
MatrixType
::
Identity
(
rows
,
cols
);
VERIFY_IS_APPROX
(
id
.
operatorNorm
(),
RealScalar
(
1
));
if
(
rows
>
2
&&
rows
<
20
)
{
// Test matrix with NaN
a
(
0
,
0
)
=
std
::
numeric_limits
<
typename
MatrixType
::
RealScalar
>::
quiet_NaN
();
EigenSolver
<
MatrixType
>
eiNaN
(
a
);
VERIFY_IS_NOT_EQUAL
(
eiNaN
.
info
(),
Success
);
}
// regression test for bug 1098
{
EigenSolver
<
MatrixType
>
eig
(
a
.
adjoint
()
*
a
);
eig
.
compute
(
a
.
adjoint
()
*
a
);
}
// regression test for bug 478
{
a
.
setZero
();
EigenSolver
<
MatrixType
>
ei3
(
a
);
VERIFY_IS_EQUAL
(
ei3
.
info
(),
Success
);
VERIFY_IS_MUCH_SMALLER_THAN
(
ei3
.
eigenvalues
().
norm
(),
RealScalar
(
1
));
VERIFY
((
ei3
.
eigenvectors
().
transpose
()
*
ei3
.
eigenvectors
().
transpose
()).
eval
().
isIdentity
());
}
}
template
<
typename
MatrixType
>
void
eigensolver_verify_assert
(
const
MatrixType
&
m
)
{
EigenSolver
<
MatrixType
>
eig
;
VERIFY_RAISES_ASSERT
(
eig
.
eigenvectors
());
VERIFY_RAISES_ASSERT
(
eig
.
pseudoEigenvectors
());
VERIFY_RAISES_ASSERT
(
eig
.
pseudoEigenvalueMatrix
());
VERIFY_RAISES_ASSERT
(
eig
.
eigenvalues
());
MatrixType
a
=
MatrixType
::
Random
(
m
.
rows
(),
m
.
cols
());
eig
.
compute
(
a
,
false
);
VERIFY_RAISES_ASSERT
(
eig
.
eigenvectors
());
VERIFY_RAISES_ASSERT
(
eig
.
pseudoEigenvectors
());
}
template
<
typename
CoeffType
>
Matrix
<
typename
CoeffType
::
Scalar
,
Dynamic
,
Dynamic
>
make_companion
(
const
CoeffType
&
coeffs
)
{
Index
n
=
coeffs
.
size
()
-
1
;
Matrix
<
typename
CoeffType
::
Scalar
,
Dynamic
,
Dynamic
>
res
(
n
,
n
);
res
.
setZero
();
res
.
row
(
0
)
=
-
coeffs
.
tail
(
n
)
/
coeffs
(
0
);
res
.
diagonal
(
-
1
).
setOnes
();
return
res
;
}
template
<
int
>
void
eigensolver_generic_extra
()
{
{
// regression test for bug 793
MatrixXd
a
(
3
,
3
);
a
<<
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1e+200
,
1
;
Eigen
::
EigenSolver
<
MatrixXd
>
eig
(
a
);
double
scale
=
1e-200
;
// scale to avoid overflow during the comparisons
VERIFY_IS_APPROX
(
a
*
eig
.
pseudoEigenvectors
()
*
scale
,
eig
.
pseudoEigenvectors
()
*
eig
.
pseudoEigenvalueMatrix
()
*
scale
);
VERIFY_IS_APPROX
(
a
*
eig
.
eigenvectors
()
*
scale
,
eig
.
eigenvectors
()
*
eig
.
eigenvalues
().
asDiagonal
()
*
scale
);
}
{
// check a case where all eigenvalues are null.
MatrixXd
a
(
2
,
2
);
a
<<
1
,
1
,
-
1
,
-
1
;
Eigen
::
EigenSolver
<
MatrixXd
>
eig
(
a
);
VERIFY_IS_APPROX
(
eig
.
pseudoEigenvectors
().
squaredNorm
(),
2.
);
VERIFY_IS_APPROX
((
a
*
eig
.
pseudoEigenvectors
()).
norm
()
+
1.
,
1.
);
VERIFY_IS_APPROX
((
eig
.
pseudoEigenvectors
()
*
eig
.
pseudoEigenvalueMatrix
()).
norm
()
+
1.
,
1.
);
VERIFY_IS_APPROX
((
a
*
eig
.
eigenvectors
()).
norm
()
+
1.
,
1.
);
VERIFY_IS_APPROX
((
eig
.
eigenvectors
()
*
eig
.
eigenvalues
().
asDiagonal
()).
norm
()
+
1.
,
1.
);
}
// regression test for bug 933
{
{
VectorXd
coeffs
(
5
);
coeffs
<<
1
,
-
3
,
-
175
,
-
225
,
2250
;
MatrixXd
C
=
make_companion
(
coeffs
);
EigenSolver
<
MatrixXd
>
eig
(
C
);
CALL_SUBTEST
(
check_eigensolver_for_given_mat
(
eig
,
C
)
);
}
{
// this test is tricky because it requires high accuracy in smallest eigenvalues
VectorXd
coeffs
(
5
);
coeffs
<<
6.154671e-15
,
-
1.003870e-10
,
-
9.819570e-01
,
3.995715e+03
,
2.211511e+08
;
MatrixXd
C
=
make_companion
(
coeffs
);
EigenSolver
<
MatrixXd
>
eig
(
C
);
CALL_SUBTEST
(
check_eigensolver_for_given_mat
(
eig
,
C
)
);
Index
n
=
C
.
rows
();
for
(
Index
i
=
0
;
i
<
n
;
++
i
)
{
typedef
std
::
complex
<
double
>
Complex
;
MatrixXcd
ac
=
C
.
cast
<
Complex
>
();
ac
.
diagonal
().
array
()
-=
eig
.
eigenvalues
()(
i
);
VectorXd
sv
=
ac
.
jacobiSvd
().
singularValues
();
// comparing to sv(0) is not enough here to catch the "bug",
// the hard-coded 1.0 is important!
VERIFY_IS_MUCH_SMALLER_THAN
(
sv
(
n
-
1
),
1.0
);
}
}
}
// regression test for bug 1557
{
// this test is interesting because it contains zeros on the diagonal.
MatrixXd
A_bug1557
(
3
,
3
);
A_bug1557
<<
0
,
0
,
0
,
1
,
0
,
0.5887907064808635127
,
0
,
1
,
0
;
EigenSolver
<
MatrixXd
>
eig
(
A_bug1557
);
CALL_SUBTEST
(
check_eigensolver_for_given_mat
(
eig
,
A_bug1557
)
);
}
// regression test for bug 1174
{
Index
n
=
12
;
MatrixXf
A_bug1174
(
n
,
n
);
A_bug1174
<<
262144
,
0
,
0
,
262144
,
786432
,
0
,
0
,
0
,
0
,
0
,
0
,
786432
,
262144
,
0
,
0
,
262144
,
786432
,
0
,
0
,
0
,
0
,
0
,
0
,
786432
,
262144
,
0
,
0
,
262144
,
786432
,
0
,
0
,
0
,
0
,
0
,
0
,
786432
,
262144
,
0
,
0
,
262144
,
786432
,
0
,
0
,
0
,
0
,
0
,
0
,
786432
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
0
,
0
,
262144
,
262144
,
262144
,
262144
,
262144
,
262144
,
0
;
EigenSolver
<
MatrixXf
>
eig
(
A_bug1174
);
CALL_SUBTEST
(
check_eigensolver_for_given_mat
(
eig
,
A_bug1174
)
);
}
}
EIGEN_DECLARE_TEST
(
eigensolver_generic
)
{
int
s
=
0
;
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
eigensolver
(
Matrix4f
())
);
s
=
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
/
4
);
CALL_SUBTEST_2
(
eigensolver
(
MatrixXd
(
s
,
s
))
);
TEST_SET_BUT_UNUSED_VARIABLE
(
s
)
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2
(
eigensolver
(
MatrixXd
(
1
,
1
))
);
CALL_SUBTEST_2
(
eigensolver
(
MatrixXd
(
2
,
2
))
);
CALL_SUBTEST_3
(
eigensolver
(
Matrix
<
double
,
1
,
1
>
())
);
CALL_SUBTEST_4
(
eigensolver
(
Matrix2d
())
);
}
CALL_SUBTEST_1
(
eigensolver_verify_assert
(
Matrix4f
())
);
s
=
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
/
4
);
CALL_SUBTEST_2
(
eigensolver_verify_assert
(
MatrixXd
(
s
,
s
))
);
CALL_SUBTEST_3
(
eigensolver_verify_assert
(
Matrix
<
double
,
1
,
1
>
())
);
CALL_SUBTEST_4
(
eigensolver_verify_assert
(
Matrix2d
())
);
// Test problem size constructors
CALL_SUBTEST_5
(
EigenSolver
<
MatrixXf
>
tmp
(
s
));
// regression test for bug 410
CALL_SUBTEST_2
(
{
MatrixXd
A
(
1
,
1
);
A
(
0
,
0
)
=
std
::
sqrt
(
-
1.
);
// is Not-a-Number
Eigen
::
EigenSolver
<
MatrixXd
>
solver
(
A
);
VERIFY_IS_EQUAL
(
solver
.
info
(),
NumericalIssue
);
}
);
CALL_SUBTEST_2
(
eigensolver_generic_extra
<
0
>
()
);
TEST_SET_BUT_UNUSED_VARIABLE
(
s
)
}
Event Timeline
Log In to Comment