Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102458900
dense_solvers.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 23:07
Size
6 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 23:07 (1 d, 2 h)
Engine
blob
Format
Raw Data
Handle
24324650
Attached To
rDLMA Diffusion limited mixed aggregation
dense_solvers.cpp
View Options
#include <iostream>
#include "BenchTimer.h"
#include <Eigen/Dense>
#include <map>
#include <vector>
#include <string>
#include <sstream>
using
namespace
Eigen
;
std
::
map
<
std
::
string
,
Array
<
float
,
1
,
8
,
DontAlign
|
RowMajor
>
>
results
;
std
::
vector
<
std
::
string
>
labels
;
std
::
vector
<
Array2i
>
sizes
;
template
<
typename
Solver
,
typename
MatrixType
>
EIGEN_DONT_INLINE
void
compute_norm_equation
(
Solver
&
solver
,
const
MatrixType
&
A
)
{
if
(
A
.
rows
()
!=
A
.
cols
())
solver
.
compute
(
A
.
transpose
()
*
A
);
else
solver
.
compute
(
A
);
}
template
<
typename
Solver
,
typename
MatrixType
>
EIGEN_DONT_INLINE
void
compute
(
Solver
&
solver
,
const
MatrixType
&
A
)
{
solver
.
compute
(
A
);
}
template
<
typename
Scalar
,
int
Size
>
void
bench
(
int
id
,
int
rows
,
int
size
=
Size
)
{
typedef
Matrix
<
Scalar
,
Dynamic
,
Size
>
Mat
;
typedef
Matrix
<
Scalar
,
Dynamic
,
Dynamic
>
MatDyn
;
typedef
Matrix
<
Scalar
,
Size
,
Size
>
MatSquare
;
Mat
A
(
rows
,
size
);
A
.
setRandom
();
if
(
rows
==
size
)
A
=
A
*
A
.
adjoint
();
BenchTimer
t_llt
,
t_ldlt
,
t_lu
,
t_fplu
,
t_qr
,
t_cpqr
,
t_cod
,
t_fpqr
,
t_jsvd
,
t_bdcsvd
;
int
svd_opt
=
ComputeThinU
|
ComputeThinV
;
int
tries
=
5
;
int
rep
=
1000
/
size
;
if
(
rep
==
0
)
rep
=
1
;
// rep = rep*rep;
LLT
<
MatSquare
>
llt
(
size
);
LDLT
<
MatSquare
>
ldlt
(
size
);
PartialPivLU
<
MatSquare
>
lu
(
size
);
FullPivLU
<
MatSquare
>
fplu
(
size
,
size
);
HouseholderQR
<
Mat
>
qr
(
A
.
rows
(),
A
.
cols
());
ColPivHouseholderQR
<
Mat
>
cpqr
(
A
.
rows
(),
A
.
cols
());
CompleteOrthogonalDecomposition
<
Mat
>
cod
(
A
.
rows
(),
A
.
cols
());
FullPivHouseholderQR
<
Mat
>
fpqr
(
A
.
rows
(),
A
.
cols
());
JacobiSVD
<
MatDyn
>
jsvd
(
A
.
rows
(),
A
.
cols
());
BDCSVD
<
MatDyn
>
bdcsvd
(
A
.
rows
(),
A
.
cols
());
BENCH
(
t_llt
,
tries
,
rep
,
compute_norm_equation
(
llt
,
A
));
BENCH
(
t_ldlt
,
tries
,
rep
,
compute_norm_equation
(
ldlt
,
A
));
BENCH
(
t_lu
,
tries
,
rep
,
compute_norm_equation
(
lu
,
A
));
if
(
size
<=
1000
)
BENCH
(
t_fplu
,
tries
,
rep
,
compute_norm_equation
(
fplu
,
A
));
BENCH
(
t_qr
,
tries
,
rep
,
compute
(
qr
,
A
));
BENCH
(
t_cpqr
,
tries
,
rep
,
compute
(
cpqr
,
A
));
BENCH
(
t_cod
,
tries
,
rep
,
compute
(
cod
,
A
));
if
(
size
*
rows
<=
10000000
)
BENCH
(
t_fpqr
,
tries
,
rep
,
compute
(
fpqr
,
A
));
if
(
size
<
500
)
// JacobiSVD is really too slow for too large matrices
BENCH
(
t_jsvd
,
tries
,
rep
,
jsvd
.
compute
(
A
,
svd_opt
));
// if(size*rows<=20000000)
BENCH
(
t_bdcsvd
,
tries
,
rep
,
bdcsvd
.
compute
(
A
,
svd_opt
));
results
[
"LLT"
][
id
]
=
t_llt
.
best
();
results
[
"LDLT"
][
id
]
=
t_ldlt
.
best
();
results
[
"PartialPivLU"
][
id
]
=
t_lu
.
best
();
results
[
"FullPivLU"
][
id
]
=
t_fplu
.
best
();
results
[
"HouseholderQR"
][
id
]
=
t_qr
.
best
();
results
[
"ColPivHouseholderQR"
][
id
]
=
t_cpqr
.
best
();
results
[
"CompleteOrthogonalDecomposition"
][
id
]
=
t_cod
.
best
();
results
[
"FullPivHouseholderQR"
][
id
]
=
t_fpqr
.
best
();
results
[
"JacobiSVD"
][
id
]
=
t_jsvd
.
best
();
results
[
"BDCSVD"
][
id
]
=
t_bdcsvd
.
best
();
}
int
main
()
{
labels
.
push_back
(
"LLT"
);
labels
.
push_back
(
"LDLT"
);
labels
.
push_back
(
"PartialPivLU"
);
labels
.
push_back
(
"FullPivLU"
);
labels
.
push_back
(
"HouseholderQR"
);
labels
.
push_back
(
"ColPivHouseholderQR"
);
labels
.
push_back
(
"CompleteOrthogonalDecomposition"
);
labels
.
push_back
(
"FullPivHouseholderQR"
);
labels
.
push_back
(
"JacobiSVD"
);
labels
.
push_back
(
"BDCSVD"
);
for
(
int
i
=
0
;
i
<
labels
.
size
();
++
i
)
results
[
labels
[
i
]].
fill
(
-
1
);
const
int
small
=
8
;
sizes
.
push_back
(
Array2i
(
small
,
small
));
sizes
.
push_back
(
Array2i
(
100
,
100
));
sizes
.
push_back
(
Array2i
(
1000
,
1000
));
sizes
.
push_back
(
Array2i
(
4000
,
4000
));
sizes
.
push_back
(
Array2i
(
10000
,
small
));
sizes
.
push_back
(
Array2i
(
10000
,
100
));
sizes
.
push_back
(
Array2i
(
10000
,
1000
));
sizes
.
push_back
(
Array2i
(
10000
,
4000
));
using
namespace
std
;
for
(
int
k
=
0
;
k
<
sizes
.
size
();
++
k
)
{
cout
<<
sizes
[
k
](
0
)
<<
"x"
<<
sizes
[
k
](
1
)
<<
"...
\n
"
;
bench
<
float
,
Dynamic
>
(
k
,
sizes
[
k
](
0
),
sizes
[
k
](
1
));
}
cout
.
width
(
32
);
cout
<<
"solver/size"
;
cout
<<
" "
;
for
(
int
k
=
0
;
k
<
sizes
.
size
();
++
k
)
{
std
::
stringstream
ss
;
ss
<<
sizes
[
k
](
0
)
<<
"x"
<<
sizes
[
k
](
1
);
cout
.
width
(
10
);
cout
<<
ss
.
str
();
cout
<<
" "
;
}
cout
<<
endl
;
for
(
int
i
=
0
;
i
<
labels
.
size
();
++
i
)
{
cout
.
width
(
32
);
cout
<<
labels
[
i
];
cout
<<
" "
;
ArrayXf
r
=
(
results
[
labels
[
i
]]
*
100000.f
).
floor
()
/
100.f
;
for
(
int
k
=
0
;
k
<
sizes
.
size
();
++
k
)
{
cout
.
width
(
10
);
if
(
r
(
k
)
>=
1e6
)
cout
<<
"-"
;
else
cout
<<
r
(
k
);
cout
<<
" "
;
}
cout
<<
endl
;
}
// HTML output
cout
<<
"<table class=
\"
manual
\"
>"
<<
endl
;
cout
<<
"<tr><th>solver/size</th>"
<<
endl
;
for
(
int
k
=
0
;
k
<
sizes
.
size
();
++
k
)
cout
<<
" <th>"
<<
sizes
[
k
](
0
)
<<
"x"
<<
sizes
[
k
](
1
)
<<
"</th>"
;
cout
<<
"</tr>"
<<
endl
;
for
(
int
i
=
0
;
i
<
labels
.
size
();
++
i
)
{
cout
<<
"<tr"
;
if
(
i
%
2
==
1
)
cout
<<
" class=
\"
alt
\"
"
;
cout
<<
"><td>"
<<
labels
[
i
]
<<
"</td>"
;
ArrayXf
r
=
(
results
[
labels
[
i
]]
*
100000.f
).
floor
()
/
100.f
;
for
(
int
k
=
0
;
k
<
sizes
.
size
();
++
k
)
{
if
(
r
(
k
)
>=
1e6
)
cout
<<
"<td>-</td>"
;
else
{
cout
<<
"<td>"
<<
r
(
k
);
if
(
i
>
0
)
cout
<<
" (x"
<<
numext
::
round
(
10.f
*
results
[
labels
[
i
]](
k
)
/
results
[
"LLT"
](
k
))
/
10.f
<<
")"
;
if
(
i
<
4
&&
sizes
[
k
](
0
)
!=
sizes
[
k
](
1
))
cout
<<
" <sup><a href=
\"
#note_ls
\"
>*</a></sup>"
;
cout
<<
"</td>"
;
}
}
cout
<<
"</tr>"
<<
endl
;
}
cout
<<
"</table>"
<<
endl
;
// cout << "LLT (ms) " << (results["LLT"]*1000.).format(fmt) << "\n";
// cout << "LDLT (%) " << (results["LDLT"]/results["LLT"]).format(fmt) << "\n";
// cout << "PartialPivLU (%) " << (results["PartialPivLU"]/results["LLT"]).format(fmt) << "\n";
// cout << "FullPivLU (%) " << (results["FullPivLU"]/results["LLT"]).format(fmt) << "\n";
// cout << "HouseholderQR (%) " << (results["HouseholderQR"]/results["LLT"]).format(fmt) << "\n";
// cout << "ColPivHouseholderQR (%) " << (results["ColPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
// cout << "CompleteOrthogonalDecomposition (%) " << (results["CompleteOrthogonalDecomposition"]/results["LLT"]).format(fmt) << "\n";
// cout << "FullPivHouseholderQR (%) " << (results["FullPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
// cout << "JacobiSVD (%) " << (results["JacobiSVD"]/results["LLT"]).format(fmt) << "\n";
// cout << "BDCSVD (%) " << (results["BDCSVD"]/results["LLT"]).format(fmt) << "\n";
}
Event Timeline
Log In to Comment