Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102557832
sparse_product.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Feb 21, 23:52
Size
24 KB
Mime Type
text/x-c
Expires
Sun, Feb 23, 23:52 (1 d, 5 h)
Engine
blob
Format
Raw Data
Handle
24359468
Attached To
rDLMA Diffusion limited mixed aggregation
sparse_product.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(_MSC_VER) && (_MSC_VER==1800)
// This unit test takes forever to compile in Release mode with MSVC 2013,
// multiple hours. So let's switch off optimization for this one.
#pragma optimize("",off)
#endif
static long int nb_temporaries;
inline void on_temporary_creation() {
// here's a great place to set a breakpoint when debugging failures in this test!
nb_temporaries++;
}
#define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN { on_temporary_creation(); }
#include "sparse.h"
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
nb_temporaries = 0; \
CALL_SUBTEST( XPR ); \
if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
VERIFY( (#XPR) && nb_temporaries==N ); \
}
template<typename SparseMatrixType> void sparse_product()
{
typedef typename SparseMatrixType::StorageIndex StorageIndex;
Index n = 100;
const Index rows = internal::random<Index>(1,n);
const Index cols = internal::random<Index>(1,n);
const Index depth = internal::random<Index>(1,n);
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = (std::max)(8./(rows*cols), 0.2);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
typedef SparseVector<Scalar,0,StorageIndex> ColSpVector;
typedef SparseVector<Scalar,RowMajor,StorageIndex> RowSpVector;
Scalar s1 = internal::random<Scalar>();
Scalar s2 = internal::random<Scalar>();
// test matrix-matrix product
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth);
DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols);
DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols);
DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
DenseMatrix refMat5 = DenseMatrix::Random(depth, cols);
DenseMatrix refMat6 = DenseMatrix::Random(rows, rows);
DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
// DenseVector dv1 = DenseVector::Random(rows);
SparseMatrixType m2 (rows, depth);
SparseMatrixType m2t(depth, rows);
SparseMatrixType m3 (depth, cols);
SparseMatrixType m3t(cols, depth);
SparseMatrixType m4 (rows, cols);
SparseMatrixType m4t(cols, rows);
SparseMatrixType m6(rows, rows);
initSparse(density, refMat2, m2);
initSparse(density, refMat2t, m2t);
initSparse(density, refMat3, m3);
initSparse(density, refMat3t, m3t);
initSparse(density, refMat4, m4);
initSparse(density, refMat4t, m4t);
initSparse(density, refMat6, m6);
// int c = internal::random<int>(0,depth-1);
// sparse * sparse
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
VERIFY_IS_APPROX(m4 = (m2+m2)*m3, refMat4 = (refMat2+refMat2)*refMat3);
VERIFY_IS_APPROX(m4 = m2*m3.leftCols(cols/2), refMat4 = refMat2*refMat3.leftCols(cols/2));
VERIFY_IS_APPROX(m4 = m2*(m3+m3).leftCols(cols/2), refMat4 = refMat2*(refMat3+refMat3).leftCols(cols/2));
VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
#ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
// make sure the right product implementation is called:
if((!SparseMatrixType::IsRowMajor) && m2.rows()<=m3.cols())
{
VERIFY_EVALUATION_COUNT(m4 = m2*m3, 2); // 2 for transposing and get a sorted result.
VERIFY_EVALUATION_COUNT(m4 = (m2*m3).pruned(0), 1);
VERIFY_EVALUATION_COUNT(m4 = (m2*m3).eval().pruned(0), 4);
}
#endif
// and that pruning is effective:
{
DenseMatrix Ad(2,2);
Ad << -1, 1, 1, 1;
SparseMatrixType As(Ad.sparseView()), B(2,2);
VERIFY_IS_EQUAL( (As*As.transpose()).eval().nonZeros(), 4);
VERIFY_IS_EQUAL( (Ad*Ad.transpose()).eval().sparseView().eval().nonZeros(), 2);
VERIFY_IS_EQUAL( (As*As.transpose()).pruned(1e-6).eval().nonZeros(), 2);
}
// dense ?= sparse * sparse
VERIFY_IS_APPROX(dm4 =m2*m3, refMat4 =refMat2*refMat3);
VERIFY_IS_APPROX(dm4+=m2*m3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4-=m2*m3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3, refMat4 =refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3, refMat4+=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3, refMat4-=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3t.transpose(), refMat4 =refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3t.transpose(), refMat4+=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3t.transpose(), refMat4-=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(dm4 =m2*m3t.transpose(), refMat4 =refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4+=m2*m3t.transpose(), refMat4+=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4-=m2*m3t.transpose(), refMat4-=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
// test aliasing
m4 = m2; refMat4 = refMat2;
VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
// sparse * dense matrix
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=dm4+m2*refMat3, refMat4=refMat4+refMat2*refMat3);
VERIFY_IS_APPROX(dm4+=m2*refMat3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4-=m2*refMat3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4.noalias()+=m2*refMat3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4.noalias()-=m2*refMat3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
// sparse * dense vector
VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0));
VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0));
VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3.col(0), refMat4.col(0)=refMat2t.transpose()*refMat3.col(0));
VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3t.transpose().col(0), refMat4.col(0)=refMat2t.transpose()*refMat3t.transpose().col(0));
// dense * sparse
VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=dm4+refMat2*m3, refMat4=refMat4+refMat2*refMat3);
VERIFY_IS_APPROX(dm4+=refMat2*m3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4-=refMat2*m3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4.noalias()+=refMat2*m3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4.noalias()-=refMat2*m3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
// sparse * dense and dense * sparse outer product
{
Index c = internal::random<Index>(0,depth-1);
Index r = internal::random<Index>(0,rows-1);
Index c1 = internal::random<Index>(0,cols-1);
Index r1 = internal::random<Index>(0,depth-1);
DenseMatrix dm5 = DenseMatrix::Random(depth, cols);
VERIFY_IS_APPROX( m4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.middleCols(c,1).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
VERIFY_IS_APPROX( m4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX( m4=m2.middleRows(r,1).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.middleRows(r,1), refMat4=dm5.col(c1)*refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
}
VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
// sparse matrix * sparse vector
ColSpVector cv0(cols), cv1;
DenseVector dcv0(cols), dcv1;
initSparse(2*density,dcv0, cv0);
RowSpVector rv0(depth), rv1;
RowDenseVector drv0(depth), drv1(rv1);
initSparse(2*density,drv0, rv0);
VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
}
// test matrix - diagonal product
{
DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols));
DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows));
SparseMatrixType m2(rows, cols);
SparseMatrixType m3(rows, cols);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
// also check with a SparseWrapper:
DenseVector v1 = DenseVector::Random(cols);
DenseVector v2 = DenseVector::Random(rows);
DenseVector v3 = DenseVector::Random(rows);
VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
VERIFY_IS_APPROX(v2=m2*v1.asDiagonal()*v1, refM2*v1.asDiagonal()*v1);
VERIFY_IS_APPROX(v3=v2.asDiagonal()*m2*v1, v2.asDiagonal()*refM2*v1);
// evaluate to a dense matrix to check the .row() and .col() iterator functions
VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2);
VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
}
// test self-adjoint and triangular-view products
{
DenseMatrix b = DenseMatrix::Random(rows, rows);
DenseMatrix x = DenseMatrix::Random(rows, rows);
DenseMatrix refX = DenseMatrix::Random(rows, rows);
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
DenseMatrix refA = DenseMatrix::Zero(rows, rows);
SparseMatrixType mUp(rows, rows);
SparseMatrixType mLo(rows, rows);
SparseMatrixType mS(rows, rows);
SparseMatrixType mA(rows, rows);
initSparse<Scalar>(density, refA, mA);
do {
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
} while (refUp.isZero());
refLo = refUp.adjoint();
mLo = mUp.adjoint();
refS = refUp + refLo;
refS.diagonal() *= 0.5;
mS = mUp + mLo;
// TODO be able to address the diagonal....
for (int k=0; k<mS.outerSize(); ++k)
for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
if (it.index() == k)
it.valueRef() *= Scalar(0.5);
VERIFY_IS_APPROX(refS.adjoint(), refS);
VERIFY_IS_APPROX(mS.adjoint(), mS);
VERIFY_IS_APPROX(mS, refS);
VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
// sparse selfadjointView with dense matrices
VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
VERIFY_IS_APPROX(x=b * mUp.template selfadjointView<Upper>(), refX=b*refS);
VERIFY_IS_APPROX(x=b * mLo.template selfadjointView<Lower>(), refX=b*refS);
VERIFY_IS_APPROX(x=b * mS.template selfadjointView<Upper|Lower>(), refX=b*refS);
VERIFY_IS_APPROX(x.noalias()+=mUp.template selfadjointView<Upper>()*b, refX+=refS*b);
VERIFY_IS_APPROX(x.noalias()-=mLo.template selfadjointView<Lower>()*b, refX-=refS*b);
VERIFY_IS_APPROX(x.noalias()+=mS.template selfadjointView<Upper|Lower>()*b, refX+=refS*b);
// sparse selfadjointView with sparse matrices
SparseMatrixType mSres(rows,rows);
VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
refX = refLo.template selfadjointView<Lower>()*refS);
VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
refX = refS * refLo.template selfadjointView<Lower>());
// sparse triangularView with dense matrices
VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b);
VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b);
VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>());
VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>());
// sparse triangularView with sparse matrices
VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS, refX = refA.template triangularView<Lower>()*refS);
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>());
VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>()*mS, refX = refA.template triangularView<Upper>()*refS);
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>());
}
}
// New test for Bug in SparseTimeDenseProduct
template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test()
{
// This code does not compile with afflicted versions of the bug
SparseMatrixType sm1(3,2);
DenseMatrixType m2(2,2);
sm1.setZero();
m2.setZero();
DenseMatrixType m3 = sm1*m2;
// This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
// bug
SparseMatrixType sm2(20000,2);
sm2.setZero();
DenseMatrixType m4(sm2*m2);
VERIFY_IS_APPROX( m4(0,0), 0.0 );
}
template<typename Scalar>
void bug_942()
{
typedef Matrix<Scalar, Dynamic, 1> Vector;
typedef SparseMatrix<Scalar, ColMajor> ColSpMat;
typedef SparseMatrix<Scalar, RowMajor> RowSpMat;
ColSpMat cmA(1,1);
cmA.insert(0,0) = 1;
RowSpMat rmA(1,1);
rmA.insert(0,0) = 1;
Vector d(1);
d[0] = 2;
double res = 2;
VERIFY_IS_APPROX( ( cmA*d.asDiagonal() ).eval().coeff(0,0), res );
VERIFY_IS_APPROX( ( d.asDiagonal()*rmA ).eval().coeff(0,0), res );
VERIFY_IS_APPROX( ( rmA*d.asDiagonal() ).eval().coeff(0,0), res );
VERIFY_IS_APPROX( ( d.asDiagonal()*cmA ).eval().coeff(0,0), res );
}
template<typename Real>
void test_mixing_types()
{
typedef std::complex<Real> Cplx;
typedef SparseMatrix<Real> SpMatReal;
typedef SparseMatrix<Cplx> SpMatCplx;
typedef SparseMatrix<Cplx,RowMajor> SpRowMatCplx;
typedef Matrix<Real,Dynamic,Dynamic> DenseMatReal;
typedef Matrix<Cplx,Dynamic,Dynamic> DenseMatCplx;
Index n = internal::random<Index>(1,100);
double density = (std::max)(8./(n*n), 0.2);
SpMatReal sR1(n,n);
SpMatCplx sC1(n,n), sC2(n,n), sC3(n,n);
SpRowMatCplx sCR(n,n);
DenseMatReal dR1(n,n);
DenseMatCplx dC1(n,n), dC2(n,n), dC3(n,n);
initSparse<Real>(density, dR1, sR1);
initSparse<Cplx>(density, dC1, sC1);
initSparse<Cplx>(density, dC2, sC2);
VERIFY_IS_APPROX( sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1 );
VERIFY_IS_APPROX( dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1 );
VERIFY_IS_APPROX( dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0) );
VERIFY_IS_APPROX( dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0) );
}
EIGEN_DECLARE_TEST(sparse_product)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) );
CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
CALL_SUBTEST_1( (bug_942<double>()) );
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
CALL_SUBTEST_5( (test_mixing_types<float>()) );
}
}
Event Timeline
Log In to Comment