Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102621039
HouseholderSequence.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 22, 14:56
Size
23 KB
Mime Type
text/x-c
Expires
Mon, Feb 24, 14:56 (1 d, 11 h)
Engine
blob
Format
Raw Data
Handle
24376047
Attached To
rDLMA Diffusion limited mixed aggregation
HouseholderSequence.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
namespace
Eigen
{
/** \ingroup Householder_Module
* \householder_module
* \class HouseholderSequence
* \brief Sequence of Householder reflections acting on subspaces with decreasing size
* \tparam VectorsType type of matrix containing the Householder vectors
* \tparam CoeffsType type of vector containing the Householder coefficients
* \tparam Side either OnTheLeft (the default) or OnTheRight
*
* This class represents a product sequence of Householder reflections where the first Householder reflection
* acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
* the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
* spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
* one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
* are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
* HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
* and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
*
* More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
* form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
* v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
* v_i \f$ is a vector of the form
* \f[
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
* \f]
* The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
*
* Typical usages are listed below, where H is a HouseholderSequence:
* \code
* A.applyOnTheRight(H); // A = A * H
* A.applyOnTheLeft(H); // A = H * A
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
* MatrixXd Q = H; // conversion to a dense matrix
* \endcode
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
*
* See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
namespace
internal
{
template
<
typename
VectorsType
,
typename
CoeffsType
,
int
Side
>
struct
traits
<
HouseholderSequence
<
VectorsType
,
CoeffsType
,
Side
>
>
{
typedef
typename
VectorsType
::
Scalar
Scalar
;
typedef
typename
VectorsType
::
StorageIndex
StorageIndex
;
typedef
typename
VectorsType
::
StorageKind
StorageKind
;
enum
{
RowsAtCompileTime
=
Side
==
OnTheLeft
?
traits
<
VectorsType
>::
RowsAtCompileTime
:
traits
<
VectorsType
>::
ColsAtCompileTime
,
ColsAtCompileTime
=
RowsAtCompileTime
,
MaxRowsAtCompileTime
=
Side
==
OnTheLeft
?
traits
<
VectorsType
>::
MaxRowsAtCompileTime
:
traits
<
VectorsType
>::
MaxColsAtCompileTime
,
MaxColsAtCompileTime
=
MaxRowsAtCompileTime
,
Flags
=
0
};
};
struct
HouseholderSequenceShape
{};
template
<
typename
VectorsType
,
typename
CoeffsType
,
int
Side
>
struct
evaluator_traits
<
HouseholderSequence
<
VectorsType
,
CoeffsType
,
Side
>
>
:
public
evaluator_traits_base
<
HouseholderSequence
<
VectorsType
,
CoeffsType
,
Side
>
>
{
typedef
HouseholderSequenceShape
Shape
;
};
template
<
typename
VectorsType
,
typename
CoeffsType
,
int
Side
>
struct
hseq_side_dependent_impl
{
typedef
Block
<
const
VectorsType
,
Dynamic
,
1
>
EssentialVectorType
;
typedef
HouseholderSequence
<
VectorsType
,
CoeffsType
,
OnTheLeft
>
HouseholderSequenceType
;
static
EIGEN_DEVICE_FUNC
inline
const
EssentialVectorType
essentialVector
(
const
HouseholderSequenceType
&
h
,
Index
k
)
{
Index
start
=
k
+
1
+
h
.
m_shift
;
return
Block
<
const
VectorsType
,
Dynamic
,
1
>
(
h
.
m_vectors
,
start
,
k
,
h
.
rows
()
-
start
,
1
);
}
};
template
<
typename
VectorsType
,
typename
CoeffsType
>
struct
hseq_side_dependent_impl
<
VectorsType
,
CoeffsType
,
OnTheRight
>
{
typedef
Transpose
<
Block
<
const
VectorsType
,
1
,
Dynamic
>
>
EssentialVectorType
;
typedef
HouseholderSequence
<
VectorsType
,
CoeffsType
,
OnTheRight
>
HouseholderSequenceType
;
static
inline
const
EssentialVectorType
essentialVector
(
const
HouseholderSequenceType
&
h
,
Index
k
)
{
Index
start
=
k
+
1
+
h
.
m_shift
;
return
Block
<
const
VectorsType
,
1
,
Dynamic
>
(
h
.
m_vectors
,
k
,
start
,
1
,
h
.
rows
()
-
start
).
transpose
();
}
};
template
<
typename
OtherScalarType
,
typename
MatrixType
>
struct
matrix_type_times_scalar_type
{
typedef
typename
ScalarBinaryOpTraits
<
OtherScalarType
,
typename
MatrixType
::
Scalar
>::
ReturnType
ResultScalar
;
typedef
Matrix
<
ResultScalar
,
MatrixType
::
RowsAtCompileTime
,
MatrixType
::
ColsAtCompileTime
,
0
,
MatrixType
::
MaxRowsAtCompileTime
,
MatrixType
::
MaxColsAtCompileTime
>
Type
;
};
}
// end namespace internal
template
<
typename
VectorsType
,
typename
CoeffsType
,
int
Side
>
class
HouseholderSequence
:
public
EigenBase
<
HouseholderSequence
<
VectorsType
,
CoeffsType
,
Side
>
>
{
typedef
typename
internal
::
hseq_side_dependent_impl
<
VectorsType
,
CoeffsType
,
Side
>::
EssentialVectorType
EssentialVectorType
;
public:
enum
{
RowsAtCompileTime
=
internal
::
traits
<
HouseholderSequence
>::
RowsAtCompileTime
,
ColsAtCompileTime
=
internal
::
traits
<
HouseholderSequence
>::
ColsAtCompileTime
,
MaxRowsAtCompileTime
=
internal
::
traits
<
HouseholderSequence
>::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
internal
::
traits
<
HouseholderSequence
>::
MaxColsAtCompileTime
};
typedef
typename
internal
::
traits
<
HouseholderSequence
>::
Scalar
Scalar
;
typedef
HouseholderSequence
<
typename
internal
::
conditional
<
NumTraits
<
Scalar
>::
IsComplex
,
typename
internal
::
remove_all
<
typename
VectorsType
::
ConjugateReturnType
>::
type
,
VectorsType
>::
type
,
typename
internal
::
conditional
<
NumTraits
<
Scalar
>::
IsComplex
,
typename
internal
::
remove_all
<
typename
CoeffsType
::
ConjugateReturnType
>::
type
,
CoeffsType
>::
type
,
Side
>
ConjugateReturnType
;
typedef
HouseholderSequence
<
VectorsType
,
typename
internal
::
conditional
<
NumTraits
<
Scalar
>::
IsComplex
,
typename
internal
::
remove_all
<
typename
CoeffsType
::
ConjugateReturnType
>::
type
,
CoeffsType
>::
type
,
Side
>
AdjointReturnType
;
typedef
HouseholderSequence
<
typename
internal
::
conditional
<
NumTraits
<
Scalar
>::
IsComplex
,
typename
internal
::
remove_all
<
typename
VectorsType
::
ConjugateReturnType
>::
type
,
VectorsType
>::
type
,
CoeffsType
,
Side
>
TransposeReturnType
;
typedef
HouseholderSequence
<
typename
internal
::
add_const
<
VectorsType
>::
type
,
typename
internal
::
add_const
<
CoeffsType
>::
type
,
Side
>
ConstHouseholderSequence
;
/** \brief Constructor.
* \param[in] v %Matrix containing the essential parts of the Householder vectors
* \param[in] h Vector containing the Householder coefficients
*
* Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
* i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
* Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
* i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
* Householder reflections as there are columns.
*
* \note The %HouseholderSequence object stores \p v and \p h by reference.
*
* Example: \include HouseholderSequence_HouseholderSequence.cpp
* Output: \verbinclude HouseholderSequence_HouseholderSequence.out
*
* \sa setLength(), setShift()
*/
EIGEN_DEVICE_FUNC
HouseholderSequence
(
const
VectorsType
&
v
,
const
CoeffsType
&
h
)
:
m_vectors
(
v
),
m_coeffs
(
h
),
m_reverse
(
false
),
m_length
(
v
.
diagonalSize
()),
m_shift
(
0
)
{
}
/** \brief Copy constructor. */
EIGEN_DEVICE_FUNC
HouseholderSequence
(
const
HouseholderSequence
&
other
)
:
m_vectors
(
other
.
m_vectors
),
m_coeffs
(
other
.
m_coeffs
),
m_reverse
(
other
.
m_reverse
),
m_length
(
other
.
m_length
),
m_shift
(
other
.
m_shift
)
{
}
/** \brief Number of rows of transformation viewed as a matrix.
* \returns Number of rows
* \details This equals the dimension of the space that the transformation acts on.
*/
EIGEN_DEVICE_FUNC
EIGEN_CONSTEXPR
Index
rows
()
const
EIGEN_NOEXCEPT
{
return
Side
==
OnTheLeft
?
m_vectors
.
rows
()
:
m_vectors
.
cols
();
}
/** \brief Number of columns of transformation viewed as a matrix.
* \returns Number of columns
* \details This equals the dimension of the space that the transformation acts on.
*/
EIGEN_DEVICE_FUNC
EIGEN_CONSTEXPR
Index
cols
()
const
EIGEN_NOEXCEPT
{
return
rows
();
}
/** \brief Essential part of a Householder vector.
* \param[in] k Index of Householder reflection
* \returns Vector containing non-trivial entries of k-th Householder vector
*
* This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
* length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
* \f[
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
* \f]
* The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
* passed to the constructor.
*
* \sa setShift(), shift()
*/
EIGEN_DEVICE_FUNC
const
EssentialVectorType
essentialVector
(
Index
k
)
const
{
eigen_assert
(
k
>=
0
&&
k
<
m_length
);
return
internal
::
hseq_side_dependent_impl
<
VectorsType
,
CoeffsType
,
Side
>::
essentialVector
(
*
this
,
k
);
}
/** \brief %Transpose of the Householder sequence. */
TransposeReturnType
transpose
()
const
{
return
TransposeReturnType
(
m_vectors
.
conjugate
(),
m_coeffs
)
.
setReverseFlag
(
!
m_reverse
)
.
setLength
(
m_length
)
.
setShift
(
m_shift
);
}
/** \brief Complex conjugate of the Householder sequence. */
ConjugateReturnType
conjugate
()
const
{
return
ConjugateReturnType
(
m_vectors
.
conjugate
(),
m_coeffs
.
conjugate
())
.
setReverseFlag
(
m_reverse
)
.
setLength
(
m_length
)
.
setShift
(
m_shift
);
}
/** \returns an expression of the complex conjugate of \c *this if Cond==true,
* returns \c *this otherwise.
*/
template
<
bool
Cond
>
EIGEN_DEVICE_FUNC
inline
typename
internal
::
conditional
<
Cond
,
ConjugateReturnType
,
ConstHouseholderSequence
>::
type
conjugateIf
()
const
{
typedef
typename
internal
::
conditional
<
Cond
,
ConjugateReturnType
,
ConstHouseholderSequence
>::
type
ReturnType
;
return
ReturnType
(
m_vectors
.
template
conjugateIf
<
Cond
>
(),
m_coeffs
.
template
conjugateIf
<
Cond
>
());
}
/** \brief Adjoint (conjugate transpose) of the Householder sequence. */
AdjointReturnType
adjoint
()
const
{
return
AdjointReturnType
(
m_vectors
,
m_coeffs
.
conjugate
())
.
setReverseFlag
(
!
m_reverse
)
.
setLength
(
m_length
)
.
setShift
(
m_shift
);
}
/** \brief Inverse of the Householder sequence (equals the adjoint). */
AdjointReturnType
inverse
()
const
{
return
adjoint
();
}
/** \internal */
template
<
typename
DestType
>
inline
EIGEN_DEVICE_FUNC
void
evalTo
(
DestType
&
dst
)
const
{
Matrix
<
Scalar
,
DestType
::
RowsAtCompileTime
,
1
,
AutoAlign
|
ColMajor
,
DestType
::
MaxRowsAtCompileTime
,
1
>
workspace
(
rows
());
evalTo
(
dst
,
workspace
);
}
/** \internal */
template
<
typename
Dest
,
typename
Workspace
>
EIGEN_DEVICE_FUNC
void
evalTo
(
Dest
&
dst
,
Workspace
&
workspace
)
const
{
workspace
.
resize
(
rows
());
Index
vecs
=
m_length
;
if
(
internal
::
is_same_dense
(
dst
,
m_vectors
))
{
// in-place
dst
.
diagonal
().
setOnes
();
dst
.
template
triangularView
<
StrictlyUpper
>
().
setZero
();
for
(
Index
k
=
vecs
-
1
;
k
>=
0
;
--
k
)
{
Index
cornerSize
=
rows
()
-
k
-
m_shift
;
if
(
m_reverse
)
dst
.
bottomRightCorner
(
cornerSize
,
cornerSize
)
.
applyHouseholderOnTheRight
(
essentialVector
(
k
),
m_coeffs
.
coeff
(
k
),
workspace
.
data
());
else
dst
.
bottomRightCorner
(
cornerSize
,
cornerSize
)
.
applyHouseholderOnTheLeft
(
essentialVector
(
k
),
m_coeffs
.
coeff
(
k
),
workspace
.
data
());
// clear the off diagonal vector
dst
.
col
(
k
).
tail
(
rows
()
-
k
-
1
).
setZero
();
}
// clear the remaining columns if needed
for
(
Index
k
=
0
;
k
<
cols
()
-
vecs
;
++
k
)
dst
.
col
(
k
).
tail
(
rows
()
-
k
-
1
).
setZero
();
}
else
if
(
m_length
>
BlockSize
)
{
dst
.
setIdentity
(
rows
(),
rows
());
if
(
m_reverse
)
applyThisOnTheLeft
(
dst
,
workspace
,
true
);
else
applyThisOnTheLeft
(
dst
,
workspace
,
true
);
}
else
{
dst
.
setIdentity
(
rows
(),
rows
());
for
(
Index
k
=
vecs
-
1
;
k
>=
0
;
--
k
)
{
Index
cornerSize
=
rows
()
-
k
-
m_shift
;
if
(
m_reverse
)
dst
.
bottomRightCorner
(
cornerSize
,
cornerSize
)
.
applyHouseholderOnTheRight
(
essentialVector
(
k
),
m_coeffs
.
coeff
(
k
),
workspace
.
data
());
else
dst
.
bottomRightCorner
(
cornerSize
,
cornerSize
)
.
applyHouseholderOnTheLeft
(
essentialVector
(
k
),
m_coeffs
.
coeff
(
k
),
workspace
.
data
());
}
}
}
/** \internal */
template
<
typename
Dest
>
inline
void
applyThisOnTheRight
(
Dest
&
dst
)
const
{
Matrix
<
Scalar
,
1
,
Dest
::
RowsAtCompileTime
,
RowMajor
,
1
,
Dest
::
MaxRowsAtCompileTime
>
workspace
(
dst
.
rows
());
applyThisOnTheRight
(
dst
,
workspace
);
}
/** \internal */
template
<
typename
Dest
,
typename
Workspace
>
inline
void
applyThisOnTheRight
(
Dest
&
dst
,
Workspace
&
workspace
)
const
{
workspace
.
resize
(
dst
.
rows
());
for
(
Index
k
=
0
;
k
<
m_length
;
++
k
)
{
Index
actual_k
=
m_reverse
?
m_length
-
k
-
1
:
k
;
dst
.
rightCols
(
rows
()
-
m_shift
-
actual_k
)
.
applyHouseholderOnTheRight
(
essentialVector
(
actual_k
),
m_coeffs
.
coeff
(
actual_k
),
workspace
.
data
());
}
}
/** \internal */
template
<
typename
Dest
>
inline
void
applyThisOnTheLeft
(
Dest
&
dst
,
bool
inputIsIdentity
=
false
)
const
{
Matrix
<
Scalar
,
1
,
Dest
::
ColsAtCompileTime
,
RowMajor
,
1
,
Dest
::
MaxColsAtCompileTime
>
workspace
;
applyThisOnTheLeft
(
dst
,
workspace
,
inputIsIdentity
);
}
/** \internal */
template
<
typename
Dest
,
typename
Workspace
>
inline
void
applyThisOnTheLeft
(
Dest
&
dst
,
Workspace
&
workspace
,
bool
inputIsIdentity
=
false
)
const
{
if
(
inputIsIdentity
&&
m_reverse
)
inputIsIdentity
=
false
;
// if the entries are large enough, then apply the reflectors by block
if
(
m_length
>=
BlockSize
&&
dst
.
cols
()
>
1
)
{
// Make sure we have at least 2 useful blocks, otherwise it is point-less:
Index
blockSize
=
m_length
<
Index
(
2
*
BlockSize
)
?
(
m_length
+
1
)
/
2
:
Index
(
BlockSize
);
for
(
Index
i
=
0
;
i
<
m_length
;
i
+=
blockSize
)
{
Index
end
=
m_reverse
?
(
std
::
min
)(
m_length
,
i
+
blockSize
)
:
m_length
-
i
;
Index
k
=
m_reverse
?
i
:
(
std
::
max
)(
Index
(
0
),
end
-
blockSize
);
Index
bs
=
end
-
k
;
Index
start
=
k
+
m_shift
;
typedef
Block
<
typename
internal
::
remove_all
<
VectorsType
>::
type
,
Dynamic
,
Dynamic
>
SubVectorsType
;
SubVectorsType
sub_vecs1
(
m_vectors
.
const_cast_derived
(),
Side
==
OnTheRight
?
k
:
start
,
Side
==
OnTheRight
?
start
:
k
,
Side
==
OnTheRight
?
bs
:
m_vectors
.
rows
()
-
start
,
Side
==
OnTheRight
?
m_vectors
.
cols
()
-
start
:
bs
);
typename
internal
::
conditional
<
Side
==
OnTheRight
,
Transpose
<
SubVectorsType
>
,
SubVectorsType
&>::
type
sub_vecs
(
sub_vecs1
);
Index
dstStart
=
dst
.
rows
()
-
rows
()
+
m_shift
+
k
;
Index
dstRows
=
rows
()
-
m_shift
-
k
;
Block
<
Dest
,
Dynamic
,
Dynamic
>
sub_dst
(
dst
,
dstStart
,
inputIsIdentity
?
dstStart
:
0
,
dstRows
,
inputIsIdentity
?
dstRows
:
dst
.
cols
());
apply_block_householder_on_the_left
(
sub_dst
,
sub_vecs
,
m_coeffs
.
segment
(
k
,
bs
),
!
m_reverse
);
}
}
else
{
workspace
.
resize
(
dst
.
cols
());
for
(
Index
k
=
0
;
k
<
m_length
;
++
k
)
{
Index
actual_k
=
m_reverse
?
k
:
m_length
-
k
-
1
;
Index
dstStart
=
rows
()
-
m_shift
-
actual_k
;
dst
.
bottomRightCorner
(
dstStart
,
inputIsIdentity
?
dstStart
:
dst
.
cols
())
.
applyHouseholderOnTheLeft
(
essentialVector
(
actual_k
),
m_coeffs
.
coeff
(
actual_k
),
workspace
.
data
());
}
}
}
/** \brief Computes the product of a Householder sequence with a matrix.
* \param[in] other %Matrix being multiplied.
* \returns Expression object representing the product.
*
* This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
* and \f$ M \f$ is the matrix \p other.
*/
template
<
typename
OtherDerived
>
typename
internal
::
matrix_type_times_scalar_type
<
Scalar
,
OtherDerived
>::
Type
operator
*
(
const
MatrixBase
<
OtherDerived
>&
other
)
const
{
typename
internal
::
matrix_type_times_scalar_type
<
Scalar
,
OtherDerived
>::
Type
res
(
other
.
template
cast
<
typename
internal
::
matrix_type_times_scalar_type
<
Scalar
,
OtherDerived
>::
ResultScalar
>
());
applyThisOnTheLeft
(
res
,
internal
::
is_identity
<
OtherDerived
>::
value
&&
res
.
rows
()
==
res
.
cols
());
return
res
;
}
template
<
typename
_VectorsType
,
typename
_CoeffsType
,
int
_Side
>
friend
struct
internal
::
hseq_side_dependent_impl
;
/** \brief Sets the length of the Householder sequence.
* \param [in] length New value for the length.
*
* By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
* to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
* is smaller. After this function is called, the length equals \p length.
*
* \sa length()
*/
EIGEN_DEVICE_FUNC
HouseholderSequence
&
setLength
(
Index
length
)
{
m_length
=
length
;
return
*
this
;
}
/** \brief Sets the shift of the Householder sequence.
* \param [in] shift New value for the shift.
*
* By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
* column of the matrix \p v passed to the constructor corresponds to the i-th Householder
* reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
* H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
* Householder reflection.
*
* \sa shift()
*/
EIGEN_DEVICE_FUNC
HouseholderSequence
&
setShift
(
Index
shift
)
{
m_shift
=
shift
;
return
*
this
;
}
EIGEN_DEVICE_FUNC
Index
length
()
const
{
return
m_length
;
}
/**< \brief Returns the length of the Householder sequence. */
EIGEN_DEVICE_FUNC
Index
shift
()
const
{
return
m_shift
;
}
/**< \brief Returns the shift of the Householder sequence. */
/* Necessary for .adjoint() and .conjugate() */
template
<
typename
VectorsType2
,
typename
CoeffsType2
,
int
Side2
>
friend
class
HouseholderSequence
;
protected:
/** \internal
* \brief Sets the reverse flag.
* \param [in] reverse New value of the reverse flag.
*
* By default, the reverse flag is not set. If the reverse flag is set, then this object represents
* \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
* \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$.
*
* \sa reverseFlag(), transpose(), adjoint()
*/
HouseholderSequence
&
setReverseFlag
(
bool
reverse
)
{
m_reverse
=
reverse
;
return
*
this
;
}
bool
reverseFlag
()
const
{
return
m_reverse
;
}
/**< \internal \brief Returns the reverse flag. */
typename
VectorsType
::
Nested
m_vectors
;
typename
CoeffsType
::
Nested
m_coeffs
;
bool
m_reverse
;
Index
m_length
;
Index
m_shift
;
enum
{
BlockSize
=
48
};
};
/** \brief Computes the product of a matrix with a Householder sequence.
* \param[in] other %Matrix being multiplied.
* \param[in] h %HouseholderSequence being multiplied.
* \returns Expression object representing the product.
*
* This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
* Householder sequence represented by \p h.
*/
template
<
typename
OtherDerived
,
typename
VectorsType
,
typename
CoeffsType
,
int
Side
>
typename
internal
::
matrix_type_times_scalar_type
<
typename
VectorsType
::
Scalar
,
OtherDerived
>::
Type
operator
*
(
const
MatrixBase
<
OtherDerived
>&
other
,
const
HouseholderSequence
<
VectorsType
,
CoeffsType
,
Side
>&
h
)
{
typename
internal
::
matrix_type_times_scalar_type
<
typename
VectorsType
::
Scalar
,
OtherDerived
>::
Type
res
(
other
.
template
cast
<
typename
internal
::
matrix_type_times_scalar_type
<
typename
VectorsType
::
Scalar
,
OtherDerived
>::
ResultScalar
>
());
h
.
applyThisOnTheRight
(
res
);
return
res
;
}
/** \ingroup Householder_Module \householder_module
* \brief Convenience function for constructing a Householder sequence.
* \returns A HouseholderSequence constructed from the specified arguments.
*/
template
<
typename
VectorsType
,
typename
CoeffsType
>
HouseholderSequence
<
VectorsType
,
CoeffsType
>
householderSequence
(
const
VectorsType
&
v
,
const
CoeffsType
&
h
)
{
return
HouseholderSequence
<
VectorsType
,
CoeffsType
,
OnTheLeft
>
(
v
,
h
);
}
/** \ingroup Householder_Module \householder_module
* \brief Convenience function for constructing a Householder sequence.
* \returns A HouseholderSequence constructed from the specified arguments.
* \details This function differs from householderSequence() in that the template argument \p OnTheSide of
* the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
*/
template
<
typename
VectorsType
,
typename
CoeffsType
>
HouseholderSequence
<
VectorsType
,
CoeffsType
,
OnTheRight
>
rightHouseholderSequence
(
const
VectorsType
&
v
,
const
CoeffsType
&
h
)
{
return
HouseholderSequence
<
VectorsType
,
CoeffsType
,
OnTheRight
>
(
v
,
h
);
}
}
// end namespace Eigen
#endif
// EIGEN_HOUSEHOLDER_SEQUENCE_H
Event Timeline
Log In to Comment