Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F103590579
finish.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Mar 3, 05:17
Size
22 KB
Mime Type
text/x-c
Expires
Wed, Mar 5, 05:17 (1 d, 2 h)
Engine
blob
Format
Raw Data
Handle
24620287
Attached To
rLAMMPS lammps
finish.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "mpi.h"
#include "math.h"
#include "string.h"
#include "stdio.h"
#include "finish.h"
#include "timer.h"
#include "universe.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "min.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "output.h"
#include "memory.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
Finish::Finish(LAMMPS *lmp) : Pointers(lmp) {}
/* ---------------------------------------------------------------------- */
void Finish::end(int flag)
{
int i,m,nneigh,nneighfull;
int histo[10];
int loopflag,minflag,prdflag,tadflag,timeflag,fftflag,histoflag,neighflag;
double time,tmp,ave,max,min;
double time_loop,time_other;
int me,nprocs;
MPI_Comm_rank(world,&me);
MPI_Comm_size(world,&nprocs);
// recompute natoms in case atoms have been lost
bigint nblocal = atom->nlocal;
MPI_Allreduce(&nblocal,&atom->natoms,1,MPI_LMP_BIGINT,MPI_SUM,world);
// choose flavors of statistical output
// flag determines caller
// flag = 0 = just loop summary
// flag = 1 = dynamics or minimization
// flag = 2 = PRD
// flag = 3 = TAD
// turn off neighflag for Kspace partition of verlet/split integrator
loopflag = 1;
minflag = prdflag = tadflag = timeflag = fftflag = histoflag = neighflag = 0;
if (flag == 1) {
if (update->whichflag == 2) minflag = 1;
timeflag = histoflag = 1;
neighflag = 1;
if (update->whichflag == 1 &&
strcmp(update->integrate_style,"verlet/split") == 0 &&
universe->iworld == 1) neighflag = 0;
if (force->kspace && force->kspace_match("pppm",0)
&& force->kspace->fftbench) fftflag = 1;
}
if (flag == 2) prdflag = histoflag = neighflag = 1;
if (flag == 3) tadflag = histoflag = neighflag = 1;
// loop stats
if (loopflag) {
time_other = timer->array[TIME_LOOP] -
(timer->array[TIME_PAIR] + timer->array[TIME_BOND] +
timer->array[TIME_KSPACE] + timer->array[TIME_NEIGHBOR] +
timer->array[TIME_COMM] + timer->array[TIME_OUTPUT]);
time_loop = timer->array[TIME_LOOP];
MPI_Allreduce(&time_loop,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time_loop = tmp/nprocs;
// overall loop time
#if defined(_OPENMP)
if (me == 0) {
int ntasks = nprocs * comm->nthreads;
if (screen) fprintf(screen,
"Loop time of %g on %d procs (%d MPI x %d OpenMP) "
"for %d steps with " BIGINT_FORMAT " atoms\n",
time_loop,ntasks,nprocs,comm->nthreads,
update->nsteps,atom->natoms);
if (logfile) fprintf(logfile,
"Loop time of %g on %d procs (%d MPI x %d OpenMP) "
"for %d steps with " BIGINT_FORMAT " atoms\n",
time_loop,ntasks,nprocs,comm->nthreads,
update->nsteps,atom->natoms);
}
#else
if (me == 0) {
if (screen) fprintf(screen,
"Loop time of %g on %d procs for %d steps with "
BIGINT_FORMAT " atoms\n",
time_loop,nprocs,update->nsteps,atom->natoms);
if (logfile) fprintf(logfile,
"Loop time of %g on %d procs for %d steps with "
BIGINT_FORMAT " atoms\n",
time_loop,nprocs,update->nsteps,atom->natoms);
}
#endif
if (time_loop == 0.0) time_loop = 1.0;
}
// minimization stats
if (minflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
if (me == 0) {
if (screen) {
fprintf(screen,"Minimization stats:\n");
fprintf(screen," Stopping criterion = %s\n",
update->minimize->stopstr);
fprintf(screen," Energy initial, next-to-last, final = \n"
" %18.12g %18.12g %18.12g\n",
update->minimize->einitial,update->minimize->eprevious,
update->minimize->efinal);
fprintf(screen," Force two-norm initial, final = %g %g\n",
update->minimize->fnorm2_init,update->minimize->fnorm2_final);
fprintf(screen," Force max component initial, final = %g %g\n",
update->minimize->fnorminf_init,
update->minimize->fnorminf_final);
fprintf(screen," Final line search alpha, max atom move = %g %g\n",
update->minimize->alpha_final,
update->minimize->alpha_final*
update->minimize->fnorminf_final);
fprintf(screen," Iterations, force evaluations = %d %d\n",
update->minimize->niter,update->minimize->neval);
}
if (logfile) {
fprintf(logfile,"Minimization stats:\n");
fprintf(logfile," Stopping criterion = %s\n",
update->minimize->stopstr);
fprintf(logfile," Energy initial, next-to-last, final = \n"
" %18.12g %18.12g %18.12g\n",
update->minimize->einitial,update->minimize->eprevious,
update->minimize->efinal);
fprintf(logfile," Force two-norm initial, final = %g %g\n",
update->minimize->fnorm2_init,update->minimize->fnorm2_final);
fprintf(logfile," Force max component initial, final = %g %g\n",
update->minimize->fnorminf_init,
update->minimize->fnorminf_final);
fprintf(logfile," Final line search alpha, max atom move = %g %g\n",
update->minimize->alpha_final,
update->minimize->alpha_final*
update->minimize->fnorminf_final);
fprintf(logfile," Iterations, force evaluations = %d %d\n",
update->minimize->niter,update->minimize->neval);
}
}
}
// PRD stats using PAIR,BOND,KSPACE for dephase,dynamics,quench
if (prdflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
if (screen) fprintf(screen,"PRD stats:\n");
if (logfile) fprintf(logfile,"PRD stats:\n");
time = timer->array[TIME_PAIR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Dephase time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Dephase time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_BOND];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Dynamics time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Dynamics time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_KSPACE];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Quench time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Quench time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = time_other;
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
// TAD stats using PAIR,BOND,KSPACE for neb,dynamics,quench
if (tadflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
if (screen) fprintf(screen,"TAD stats:\n");
if (logfile) fprintf(logfile,"TAD stats:\n");
time = timer->array[TIME_PAIR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," NEB time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," NEB time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_BOND];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Dynamics time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Dynamics time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_KSPACE];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Quench time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Quench time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_COMM];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Comm time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Comm time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_OUTPUT];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Output time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Output time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = time_other;
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen," Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile," Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
// timing breakdowns
if (timeflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
time = timer->array[TIME_PAIR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Pair time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Pair time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
if (atom->molecular) {
time = timer->array[TIME_BOND];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Bond time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Bond time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
if (force->kspace) {
time = timer->array[TIME_KSPACE];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Kspce time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Kspce time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
time = timer->array[TIME_NEIGHBOR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Neigh time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Neigh time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_COMM];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Comm time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Comm time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = timer->array[TIME_OUTPUT];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Outpt time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Outpt time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
time = time_other;
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Other time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
// FFT timing statistics
// time3d,time1d = total time during run for 3d and 1d FFTs
// loop on timing() until nsample FFTs require at least 1.0 CPU sec
// time_kspace may be 0.0 if another partition is doing Kspace
if (fftflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
int nsteps = update->nsteps;
double time3d;
int nsample = 1;
int nfft = force->kspace->timing_3d(nsample,time3d);
while (time3d < 1.0) {
nsample *= 2;
nfft = force->kspace->timing_3d(nsample,time3d);
}
time3d = nsteps * time3d / nsample;
MPI_Allreduce(&time3d,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time3d = tmp/nprocs;
double time1d;
nsample = 1;
nfft = force->kspace->timing_1d(nsample,time1d);
while (time1d < 1.0) {
nsample *= 2;
nfft = force->kspace->timing_1d(nsample,time1d);
}
time1d = nsteps * time1d / nsample;
MPI_Allreduce(&time1d,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time1d = tmp/nprocs;
double time_kspace = timer->array[TIME_KSPACE];
MPI_Allreduce(&time_kspace,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time_kspace = tmp/nprocs;
double ntotal = 1.0 * force->kspace->nx_pppm *
force->kspace->ny_pppm * force->kspace->nz_pppm;
double nflops = 5.0 * ntotal * log(ntotal);
double fraction,flop3,flop1;
if (nsteps) {
if (time_kspace) fraction = time3d/time_kspace*100.0;
else fraction = 0.0;
flop3 = nfft*nflops/1.0e9/(time3d/nsteps);
flop1 = nfft*nflops/1.0e9/(time1d/nsteps);
} else fraction = flop3 = flop1 = 0.0;
if (me == 0) {
if (screen) {
fprintf(screen,"FFT time (%% of Kspce) = %g (%g)\n",time3d,fraction);
fprintf(screen,"FFT Gflps 3d (1d only) = %g %g\n",flop3,flop1);
}
if (logfile) {
fprintf(logfile,"FFT time (%% of Kspce) = %g (%g)\n",time3d,fraction);
fprintf(logfile,"FFT Gflps 3d (1d only) = %g %g\n",flop3,flop1);
}
}
}
if (histoflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
tmp = atom->nlocal;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Nlocal: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Nlocal: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
tmp = atom->nghost;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Nghost: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Nghost: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
// find a non-skip neighbor list containing half the pairwise interactions
// count neighbors in that list for stats purposes
for (m = 0; m < neighbor->old_nrequest; m++)
if ((neighbor->old_requests[m]->half ||
neighbor->old_requests[m]->gran ||
neighbor->old_requests[m]->respaouter ||
neighbor->old_requests[m]->half_from_full) &&
neighbor->old_requests[m]->skip == 0 &&
neighbor->lists[m]->numneigh) break;
nneigh = 0;
if (m < neighbor->old_nrequest) {
int inum = neighbor->lists[m]->inum;
int *ilist = neighbor->lists[m]->ilist;
int *numneigh = neighbor->lists[m]->numneigh;
for (i = 0; i < inum; i++)
nneigh += numneigh[ilist[i]];
}
tmp = nneigh;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Neighs: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Neighs: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
// find a non-skip neighbor list containing full pairwise interactions
// count neighbors in that list for stats purposes
for (m = 0; m < neighbor->old_nrequest; m++)
if (neighbor->old_requests[m]->full &&
neighbor->old_requests[m]->skip == 0) break;
nneighfull = 0;
if (m < neighbor->old_nrequest) {
if (neighbor->lists[m]->numneigh > 0) {
int inum = neighbor->lists[m]->inum;
int *ilist = neighbor->lists[m]->ilist;
int *numneigh = neighbor->lists[m]->numneigh;
for (i = 0; i < inum; i++)
nneighfull += numneigh[ilist[i]];
}
tmp = nneighfull;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"FullNghs: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"FullNghs: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
}
}
if (neighflag) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
tmp = MAX(nneigh,nneighfull);
double nall;
MPI_Allreduce(&tmp,&nall,1,MPI_DOUBLE,MPI_SUM,world);
int nspec;
double nspec_all;
if (atom->molecular) {
nspec = 0;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) nspec += atom->nspecial[i][2];
tmp = nspec;
MPI_Allreduce(&tmp,&nspec_all,1,MPI_DOUBLE,MPI_SUM,world);
}
if (me == 0) {
if (screen) {
if (nall < 2.0e9)
fprintf(screen,
"Total # of neighbors = %d\n",static_cast<int> (nall));
else fprintf(screen,"Total # of neighbors = %g\n",nall);
if (atom->natoms > 0)
fprintf(screen,"Ave neighs/atom = %g\n",nall/atom->natoms);
if (atom->molecular && atom->natoms > 0)
fprintf(screen,"Ave special neighs/atom = %g\n",
nspec_all/atom->natoms);
fprintf(screen,"Neighbor list builds = " BIGINT_FORMAT "\n",
neighbor->ncalls);
fprintf(screen,"Dangerous builds = " BIGINT_FORMAT "\n",
neighbor->ndanger);
}
if (logfile) {
if (nall < 2.0e9)
fprintf(logfile,
"Total # of neighbors = %d\n",static_cast<int> (nall));
else fprintf(logfile,"Total # of neighbors = %g\n",nall);
if (atom->natoms > 0)
fprintf(logfile,"Ave neighs/atom = %g\n",nall/atom->natoms);
if (atom->molecular && atom->natoms > 0)
fprintf(logfile,"Ave special neighs/atom = %g\n",
nspec_all/atom->natoms);
fprintf(logfile,"Neighbor list builds = " BIGINT_FORMAT "\n",
neighbor->ncalls);
fprintf(logfile,"Dangerous builds = " BIGINT_FORMAT "\n",
neighbor->ndanger);
}
}
}
if (logfile) fflush(logfile);
}
/* ---------------------------------------------------------------------- */
void Finish::stats(int n, double *data,
double *pave, double *pmax, double *pmin,
int nhisto, int *histo)
{
int i,m;
int *histotmp;
double min = 1.0e20;
double max = -1.0e20;
double ave = 0.0;
for (i = 0; i < n; i++) {
ave += data[i];
if (data[i] < min) min = data[i];
if (data[i] > max) max = data[i];
}
int ntotal;
MPI_Allreduce(&n,&ntotal,1,MPI_INT,MPI_SUM,world);
double tmp;
MPI_Allreduce(&ave,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
ave = tmp/ntotal;
MPI_Allreduce(&min,&tmp,1,MPI_DOUBLE,MPI_MIN,world);
min = tmp;
MPI_Allreduce(&max,&tmp,1,MPI_DOUBLE,MPI_MAX,world);
max = tmp;
for (i = 0; i < nhisto; i++) histo[i] = 0;
double del = max - min;
for (i = 0; i < n; i++) {
if (del == 0.0) m = 0;
else m = static_cast<int> ((data[i]-min)/del * nhisto);
if (m > nhisto-1) m = nhisto-1;
histo[m]++;
}
memory->create(histotmp,nhisto,"finish:histotmp");
MPI_Allreduce(histo,histotmp,nhisto,MPI_INT,MPI_SUM,world);
for (i = 0; i < nhisto; i++) histo[i] = histotmp[i];
memory->destroy(histotmp);
*pave = ave;
*pmax = max;
*pmin = min;
}
Event Timeline
Log In to Comment