Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F104887100
1_quantization.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Mar 13, 03:32
Size
18 KB
Mime Type
text/x-tex
Expires
Sat, Mar 15, 03:32 (1 d, 17 h)
Engine
blob
Format
Raw Data
Handle
24870462
Attached To
R2653 epfl
1_quantization.tex
View Options
\documentclass[aspectratio=169]{beamer}
\def\stylepath{../styles}
\usepackage{\stylepath/com303}
\begin{document}
\begin{frame} \frametitle{Overview:}
\begin{itemize}
\item Quantization
\item Uniform quantization and error analysis
\item Clipping, saturation, companding
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Quantization}
\begin{itemize}
\item digital devices can only deal with integers ($R$ bits per sample)
\item we need to map the range of a signal onto a finite set of values
\item irreversible loss of information $\rightarrow$ quantization noise
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Quantization schemes}
\begin{figure}
\center
\begin{dspBlocks}{1.2}{.11}
$x[n]$~~ & {\BDfilter{$\mathcal{Q}\{\cdot\}$}} & ~~$\hat{x}[n]$ \\
& & \\
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\vspace{1em}
Several factors at play:
\begin{itemize}
\item storage budget (bits per sample)
\item storage scheme (fixed point, floating point)
\item properties of the input
\begin{itemize}
\item range
\item probability distribution
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Scalar quantization}
\begin{figure}
\center
\begin{dspBlocks}{1.2}{.1}
$x[n]$~~ & {\BDfilter{$\mathcal{Q}\{\cdot\}$}} & ~~$\hat{x}[n]$ \\
& & \only<3->{$R$ bps} \\
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\vspace{1em}
The simplest quantizer:
\begin{itemize}
\item each sample is encoded individually (hence {\em scalar})
\item each sample is quantized independently (memoryless quantization)
\item each sample is encoded using $R$ bits
\end{itemize}
\end{frame}
\def\btick#1{\psline[linewidth=0.6pt](#1,-.1)(#1,.1)}
\def\qtick#1#2{\btick{#1}\uput{10pt}[-90](#1,0){$i_{#2}$}}
\def\qdot#1#2{\pscircle*(#1,0){2pt} \uput[90](#1,0){$\hat{x}_{#2}$}}
\def\qbrace#1#2#3#4{%
\psbrace[braceWidth=0.5pt,braceWidthOuter=3pt,rot=90,nodesepB=10pt]%
(! #1 0.1 add -0.3)(! #2 0.1 sub -0.3) {$I_{#3}$}%
\uput[-90](! #1 #2 add 0.5 mul 0.7){$k=#4$}}
\def\dbrace#1#2#3{%
\psbrace[braceWidth=0.5pt,braceWidthOuter=3pt,rot=90,nodesepB=10pt]%
(! #1 0.1 add -0.3)(! #2 0.1 sub -0.3){#3}}
\begin{frame} \frametitle{Scalar quantization}
Input signal: $A \le x[n] \le B$ ($A, B$ can be $\infty$)
\begin{itemize}
\item<2-> each sample quantized over $2^R$ possible values $\Rightarrow$ $2^R$ intervals.
\item<3-> each interval associated to a quantization value
\end{itemize}
\setbeamercovered{invisible}
\begin{figure}
\center
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)%
\btick{1} \uput{8pt}[90](1,0){$A$} \btick{5} \uput{8pt}[90](5,0){$B$}
\uncover<2->{\btick{1} \btick{2} \btick{5} \btick{2.5} \btick{4}}
\uncover<3->{\qdot{4.4}{3}\qdot{1.5}{0}\qdot{2.4}{1}\qdot{3}{2}}
\end{pspicture}
\end{figure}
\end{frame}
\begin{frame} \frametitle{Scalar quantization}
Example for $R=2$:
\begin{figure}[t]
\center
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)
\uput{8pt}[90](1,0){$A$} \uput{8pt}[90](5,0){$B$}
\qtick{1}{0} \qtick{2}{1} \qdot{1.5}{0} \qbrace{1}{2}{0}{00}
\qtick{2.5}{2} \qdot{2.4}{1} \qbrace{2}{2.5}{1}{01}
\qtick{4}{3} \qdot{3}{2} \qbrace{2.5}{4}{2}{10}
\qtick{5}{4} \qdot{4.4}{3} \qbrace{4}{5}{3}{11}
\end{pspicture}
\end{figure}
\pause
\begin{itemize}
\item what are the optimal interval boundaries $i_k$?
\item what are the optimal quantization values $\hat{x}_k$?
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Optimal Quantization}
\centering
The optimal quantizer minimizes the energy of the quantization error:
\[
e[n] = \mathcal{Q}\{ x[n] \} - x[n] = \hat{x}[n] - x[n]
\]
\vspace{1em}
\begin{itemize}
\item model $x[n]$ as a stochastic process
\item find the optimal $i_k$ and $\hat{x}_k$ that minimize $\sigma_e^2 = \expt{e^2[n]}$
\item optimal quantizer will depend on the input's statistics
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Quantization MSE}
\centering
\begin{align*}
\sigma_e^2 &= \int_{-\infty}^{\infty} (x - \mathcal{Q}\{x\})^2\,f_x(x)\,dx \\
&= \sum_{k=0}^{2^R - 1} \int_{i_k}^{i_{k+1}} (x - \hat{x}_k)^2\,f_x(x)\,dx
\end{align*}
\vspace{2em}
find global minimum wrt $i_k$, $\hat{x}_k$
\end{frame}
\begin{frame} \frametitle{Simple example: optimal one-bit quantizer}
\centering
\begin{figure}[t]
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)
\uput{8pt}[90](1,0){$A$} \uput{8pt}[90](5,0){$B$}
\qtick{1}{0} \qtick{2.5}{1} \qtick{5}{2}
\qdot{2.2}{0} \qdot{4.2}{1}
\end{pspicture}
\end{figure}
3 free parameters: $i_1, \hat{x}_0, \hat{x}_1$
\end{frame}
\begin{frame} \frametitle{Simple example: optimal one-bit quantizer}
\centering
\[
\sigma_e^2 = \int_{A}^{i_1} (x - \hat{x}_0)^2\,f_x(x)\,dx + \int_{i_1}^{B} (x - \hat{x}_1)^2\,f_x(x)\,dx
\]
\pause
\vspace{1em}
find $i_1, \hat{x}_0, \hat{x}_1$ such that
\[
\frac{\partial \sigma_e^2}{\partial i_1} = \frac{\partial \sigma_e^2}{\hat{x}_0} = \frac{\partial \sigma_e^2}{\hat{x}_1} = 0
\]
\end{frame}
\begin{frame} \frametitle{little calculus reminder}
\[
\frac{\partial}{\partial t} \int_{\alpha}^{t} f(\tau)\,d\tau = \frac{\partial}{\partial t} \left[ F(t) - F(\alpha)\right] = f(t)
\]
\end{frame}
\begin{frame} \frametitle{Optimal one-bit quantizer: threshold}
\centering
\begin{align*}
\frac{\partial \sigma_e^2}{\partial i_1} &= \frac{\partial}{\partial i_1}\left[\int_{A}^{i_1} (x - \hat{x}_0)^2\,f_x(x)\,dx + \int_{i_1}^{B} (x - \hat{x}_1)^2\,f_x(x)\,dx \right] \\ \pause
&= (i_1 - \hat{x}_0)^2\,f_x(i_1) - (i_1 - \hat{x}_1)^2\,f_x(i_1) = 0 \\ \\ \pause
&\Rightarrow (i_1 - \hat{x}_0)^2 - (i_1 - \hat{x}_1)^2 = 0 \\ \\ \pause
&\Rightarrow i_1 = \frac{\hat{x}_0 + \hat{x}_1}{2}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Optimal one-bit quantizer: values}
\centering
\begin{align*}
\frac{\partial \sigma_e^2}{\partial \hat x_0} &= \frac{\partial}{\partial x_0} \int_{A}^{i_1} (x - \hat{x}_0)^2\,f_x(x)\,dx \\ \pause
&= \int_{A}^{i_1} 2(\hat{x}_0 - x)\,f_x(x)\,dx = 0 \\ \\ \pause
&\Rightarrow \hat x_0 = \frac{\int_{A}^{i_1} x\,f_x(x)\,dx}{\int_{A}^{i_1} f_x(x)\,dx} \qquad\mbox{\it (center of mass)} \\
&\Rightarrow \hat x_1 = \frac{\int_{i_1}^{B} x\,f_x(x)\,dx}{\int_{i_1}^{B} f_x(x)\,dx}
\end{align*}
\end{frame}
\begin{frame} \frametitle{For uniformly-distributed input}
\centering
\begin{align*}
f_x(x) &= \frac{1}{B-A} \\ \\ \pause
\hat x_0 &= \frac{\int_{A}^{i_1} x\,dx}{\int_{A}^{i_1} dx} = \frac{A + i_1}{2} \\
\hat x_1 &= \frac{\int_{i_1}^{B} x\,dx}{\int_{i_1}^{B} dx} = \frac{i_1 + B}{2} \\ \\ \pause
i_1 &= \frac{\hat{x}_0 + \hat{x}_1}{2} = \frac{A + B}{2}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Optimal one-bit quantizer}
\centering
\begin{figure}[t]
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)
\uput{8pt}[90](1,0){$A$} \uput{8pt}[90](5,0){$B$}
\qtick{1}{0} \qtick{3}{1} \qtick{5}{2}
\qdot{2}{0} \qdot{4}{1}
\end{pspicture}
\end{figure}
\end{frame}
\begin{frame} \frametitle{Uniform quantization of uniform input}
\begin{itemize}
\item simple but very general case
\item optimal subdivision: $2^R$ \emph{equal} intervals of width $\Delta = (B-A)2^{-R}$
\item optimal quantization values: interval's midpoint
\end{itemize}
\setbeamercovered{invisible}
{
\begin{figure}[t]
\center
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)
\uput{8pt}[90](1,0){$A$} \uput{8pt}[90](5,0){$B$}
\btick{1}\btick{2}\btick{3}\btick{4}\btick{5}
\qdot{1.5}{0}\qdot{2.5}{1}\qdot{3.5}{2}\qdot{4.5}{3}
\dbrace{1}{2}{$\Delta$}
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}
\frametitle{Uniform 3-Bit quantization function}
\begin{figure}
\center
\psset{xunit=3cm,yunit=3cm}
\begin{pspicture}(-1.2,-1.2)(1.2,1.2)
\tiny
\psaxes[linewidth=1pt,tickwidth=0.5pt,%
Dx=.25,Dy=.25,%
showorigin=false](0,0)(-1.1,-1)(1.1,1)
\uput[90](0,1){$\hat{x}[n]$}
\uput[90](1.1,0){$x[n]$}
\multido{\n=0.875+-.250}{8}{%
\pscircle*[linecolor=orange](0,\n){2pt}
}
\psline[linecolor=blue,linestyle=dotted](-1,-1)(1,1)
\psplot[plotpoints=800,%
linewidth=1pt,linecolor=orange]{-.99}{.99}%
{x abs 0.25 div floor 0.25 mul 0.125 add x abs x div mul}
\uput[90](! -1 0.125 add 0.25 0 mul add dup){\gray 000}
\uput[90](! -1 0.125 add 0.25 1 mul add dup){\gray 001}
\uput[90](! -1 0.125 add 0.25 2 mul add dup){\gray 010}
%\uput[90](! -1 0.125 add 0.25 3 mul add dup){\gray 011}
\uput[90](! -1 0.125 add 0.25 4 mul add dup){\gray 100}
\uput[90](! -1 0.125 add 0.25 5 mul add dup){\gray 101}
\uput[90](! -1 0.125 add 0.25 6 mul add dup){\gray 110}
\uput[90](! -1 0.125 add 0.25 7 mul add dup){\gray 111}
\end{pspicture}
\end{figure}
\end{frame}
\begin{frame} \frametitle{Uniform quantization of uniform input: error analysis}
\begin{align*}
\sigma_e^2 &= \int_A^B f_x(x)(\mathcal{Q}\{ x \} - x)^2\,dx \\ \pause
&= \sum_{k=0}^{2^R-1} \int_{I_k} f_x(x)(\hat{x}_k - x)^2\,dx \\ \\ \pause
f_x(s) &= \frac{1}{B-A} \\
\Delta &= \frac{B-A}{2^R} \\
I_k &= [A + k\Delta, A+(k+1)\Delta] \\
\hat x_k &= A+k\Delta + \Delta/2
\end{align*}
\end{frame}
\begin{comment}
\begin{frame} \frametitle{Uniform quantization}
\begin{itemize}[<+->]
\item simple but very general case
\item range is split into $2^R$ \emph{equal} intervals of width $\Delta = (B-A)2^{-R}$
%\item quantization value is interval's midpoint
\end{itemize}
\setbeamercovered{invisible}
\uncover<3->{
\begin{figure}[t]
\center
\psset{xunit=2.4cm,yunit=2cm}
\begin{pspicture}(0.5,-1)(5.5,1)
\psline[linewidth=1pt,tickwidth=2pt,](1,0)(5,0)
\uput{8pt}[90](1,0){$A$} \uput{8pt}[90](5,0){$B$}
\btick{1}\btick{2}\btick{3}\btick{4}\btick{5}
\dbrace{1}{2}{$\Delta$}
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}
\frametitle{Uniform quantization}
Mean Square Error is the second moment of the error signal:
\begin{align*}
\sigma_e^2 &= \expt{|\mathcal{Q}\{ x[n] \} - x[n]|^2} \\ \pause
&= \int_A^B f_x(\tau)(\mathcal{Q}\{ \tau \} - \tau)^2\,d\tau \\ \pause
&= \sum_{k=0}^{2^R-1} \int_{I_k} f_x(\tau)(\hat{x}_k - \tau)^2\,d\tau \\ \pause
\end{align*}
\centering
error depends on the probability distribution of the input
\end{frame}
\begin{frame}
\frametitle{Uniform quantization of uniform input}
Uniform-input hypothesis:
\[
f_x(\tau) = \frac{1}{B-A}
\]
\vspace{1em}
\[
\sigma_e^2 =\,\sum_{k=0}^{2^R-1} \int_{I_k}\frac{(\hat{x}_k - \tau)^2}{B-A}\,d\tau
\]
\end{frame}
\begin{frame}
\frametitle{Uniform quantization of uniform input}
Let's find the optimal quantization point by minimizing the error
\begin{align*}
\frac{\partial\sigma_e^2}{\partial \hat{x}_m} &= \frac{\partial}{\partial \hat{x}_m}\,\sum_{k=0}^{2^R-1} \int_{I_k}\frac{(\hat{x}_k - \tau)^2}{B-A}\,d\tau \\ \pause
&= \int_{I_m} \frac{2(\hat{x}_m - \tau)}{B-A}\,d\tau \\ \pause
&= \left.\frac{(\hat{x}_m - \tau)^2}{B-A}\right|_{A + m\Delta}^{A + m\Delta + \Delta}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Uniform quantization of uniform input}
Minimizing the error:
\[
\frac{\partial\sigma_e^2}{\partial \hat{x}_m} = 0 \quad \mbox{for $\hat{x}_m = A + m\Delta + \frac{\Delta}{2}$}
\]
\vspace{1em}
\centering
optimal quantization point is the interval's midpoint, for all intervals
\end{frame}
\end{comment}
\begin{frame} \frametitle{Uniform quantization of uniform input: error analysis}
\begin{align*}
\sigma_e^2 &= \sum_{k=0}^{2^R-1} \int_{A+k\Delta}^{A+k\Delta+\Delta}\frac{(A + k\Delta + \Delta/2 - x)^2}{B-A}\,dx \\ \pause
&= 2^R \int_{0}^{\Delta}\frac{(\Delta/2 - x)^2}{B-A}\,dx \\ \pause
&= \frac{\Delta^2}{12}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Error analysis}
\begin{itemize}[<+->]
\item error energy
\[
\sigma^2_e = \Delta^2/12, \qquad \Delta = (B-A)/2^R
\]
\item signal energy
\[
\sigma_x^2 = (B-A)^2/12
\]
\item signal to noise ratio
\[
\mbox{SNR} = 2^{2R}
\]
\item in dB
\[
\mbox{SNR}_{\mbox{dB}} = 10\log_{10} 2^{2R} \approx 6R \,\,\mbox{dB}
\]
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The ``6dB/bit'' rule of thumb}
\begin{itemize}
\item a compact disk has 16 bits/sample:
\[
\mbox{max SNR} = 96\mbox{dB}
\]
\item a DVD has 24 bits/sample:
\[
\mbox{max SNR} = 144\mbox{dB}
\]
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Rate/Distortion Curve }
\begin{figure}
\begin{dspPlot}[width=5cm,height=5cm,sidegap=0,xticks=none,yticks=none,xlabel={rate ($R$)},ylabel={distortion ($\sigma_e^2$)}]{0,6}{0,1}
\moocStyle
\dspFunc{x -2 mul 2 exch exp }
\end{dspPlot}
\end{figure}
\end{frame}
\begin{frame} \frametitle{Other quantization errors}
If input is not bounded to $[A,B]$ several options; eg:
\begin{itemize}
\item clip samples to $[A,B]$: linear distortion (can be put to good use in guitar effects!)
\item smoothly saturate input: this simulates the saturation curves of analog electronics
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Clipping vs saturation}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{figure}
\begin{dspPlot}[width=5cm,height=5cm,sidegap=0]{-2.5,2.5}{-1.5,1.5}
\moocStyle
\dspFunc{x abs 1 gt {x abs x div} {x} ifelse}
\end{dspPlot}
\end{figure}
\end{column}
\begin{column}{0.45\paperwidth}
\begin{figure}
\begin{dspPlot}[width=5cm,height=5cm,sidegap=0]{-2.5,2.5}{-1.5,1.5}
\moocStyle
\dspFunc{2.7 2 x mul exp dup 1 sub exch 1 add div}
\end{dspPlot}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame} \frametitle{Other quantization errors}
If input is not uniform, several options:
\begin{itemize}
\item use uniform quantizer and accept increased error. \\
For instance, if input is Gaussian:
\[
\sigma^2_e = \frac{\sqrt{3} \pi}{2} \, \sigma^2 \, \Delta^2
\]
\item use ``companders''
\item design optimal quantizer for input distribution, if known (Lloyd-Max algorithm)
\end{itemize}
\end{frame}
\def\muval{255 }
\def\mulaw{ dup dup abs div exch abs \muval mul 1 add ln 1 \muval add ln div mul }
\def\imulaw{ abs 1 \muval add exch exp 1 sub \muval div }
\begin{frame} \frametitle{$\mu$-law compander}
\begin{columns}
\begin{column}{0.3\paperwidth}
\[
\mathcal{C}\{x[n]\} = \mbox{sgn}(x[n]) \frac{\ln(1+ \mu |x[n]|)}{\ln(1+\mu)}
\]
\end{column}
\begin{column}{0.5\paperwidth}
\begin{figure}
\center
\psset{xunit=3cm,yunit=3cm}
\begin{pspicture}(-1.2,-1.2)(1.2,1.2)
\psgrid[gridlabels=0,subgriddiv=10,subgriddots=5](0,0)(-1,-1)(1,1)
\psaxes[linewidth=1pt,labels=none,showorigin=false](0,0)(-1,-1)(1,1)
\psaxes[linewidth=1pt,axesstyle=frame,yAxis=false,ticks=none,labels=none](0,0)(-1,-1)(1,1)
\uput[90](0,1){$\mathcal{C}\{x\}$}
\uput[0](1,0){$x$}
\psplot[plotpoints=800,linewidth=2pt,linecolor=darkred]{-.99}{.99}{x \mulaw }
\end{pspicture}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame} \frametitle{Lloyd-Max Quantizer design}
\begin{align*}
\sigma_e^2 &= \sum_{k=0}^{2^R - 1} \int_{i_k}^{i_{k+1}} (x - \hat{x}_k)^2\,f_x(x)\,dx \\ \\
\mbox{A)}\quad \frac{\partial \sigma_e^2}{\partial \hat x_k} = 0 &\Rightarrow \hat x_k = \frac{\displaystyle\int_{i_{k-1}}^{i_k} x\,f_x(x)\,dx}{\displaystyle\int_{i_{k-1}}^{i_k} f_x(x)\,dx} \\
\mbox{B)}\quad\frac{\partial \sigma_e^2}{\partial i_k} = 0 &\Rightarrow i_k = \frac{\hat{x}_{k-1} + \hat{x}_k}{2}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Lloyd-Max Quantizer design}
\begin{itemize}
\item start with a guess for the $i_k$
\item solve A and B iteratively until convergence
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Analysis of the quantization error}
\begin{itemize}
\item so far we have only a \textit{quantitative} result on the error (its power)
\item to understand the distortion we need the error's spectrum
\item quantizer is nonlinear: impossible to compute the spectrum exactly
\item the common approach is to make \textit{assumptions} on the error statistics
\end{itemize}
\end{frame}
\begin{frame} \frametitle{High-resolution hypothesis}
drastic simplification of the problem: if
\begin{itemize}
\item input samples are iid (they are not)
\item $R$ is relatively large
\end{itemize}
\vspace{2em}
then we can try to use the following model:
\begin{itemize}
\item error samples are iid
\item error is uncorrelated to the signal
\item quantization error eqivalent to additive white noise with $P_e(\omega) = \Delta^2/12$
\end{itemize}
\end{frame}
\begin{frame} \frametitle{High-resolution hypothesis}
\begin{center}
\begin{dspBlocks}{1.5}{0.5}
$x[n]$~~ & \BDadd & ~~$\hat{x}[n]$ \\
& \raisebox{-12pt}{$e[n]$}
\psset{arrows=->,linewidth=1.5pt}
\ncline{1,1}{1,2} \ncline{1,2}{1,3}
\ncline{2,2}{1,2}
\end{dspBlocks}
\end{center}
\vspace{.5em}
problems with this model:
\begin{itemize}
\item error is not random!
\item error is not white or uncorrelated to the input
\end{itemize}
\vspace{.5em}
common approaches:
\begin{itemize}
\item use \textit{dithering} to whiten the noise spectrum
\item use \textit{feedback} in the quantization loop to perform \textit{noise shaping}
\end{itemize}
\end{frame}
\end{document}
Event Timeline
Log In to Comment