Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F104924002
3_comm.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Mar 13, 09:55
Size
6 KB
Mime Type
text/x-tex
Expires
Sat, Mar 15, 09:55 (1 d, 20 h)
Engine
blob
Format
Raw Data
Handle
24877392
Attached To
R2653 epfl
3_comm.tex
View Options
\documentclass
[aspectratio=169]
{
beamer
}
\usepackage
{
../styles/com303
}
%\setbeameroption{show only notes}\def\logoEPFL{}
\setbeameroption
{
show notes
}
\begin
{
document
}
\intertitle
{
digital vs analog communications
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Data transmission and noise amplification
\def\tempFun
{
x 31 div 180 mul dup 1.1 mul cos 1 add 2 div exch 4 mul sin 0.1 mul add 10 mul x 20 div add 1.4 div 5 sub
}
\def\atten
{
10 div
}
\def\noise
{
rand 2147483647 div 0.5 sub 0.2 mul add
}
\def\ampli
{
10 mul
}
\begin
{
frame
}
\frametitle
{
Data transmission
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspBlocks
}{
2
}{
0
}
TX~~
&
\BDfilter
{
channel
}
&
~~RX
\ncline
{
->
}{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
1,3
}
\end
{
dspBlocks
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
What happens to analog signals
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspBlocks
}{
2
}{
1
}
$
x
(
t
)
$
~~
&
&
\BDadd
&
~~
$
\hat
{x}
(
t
)
$
\\
&
&
\raisebox
{
-1.2em
}{
$
\sigma
(
t
)
$
}
\ncline
{
->
}{
1,1
}{
1,3
}
\taput
{
$
1
/
G
$
}
\ncline
{
->
}{
1,3
}{
1,4
}
\ncline
{
->
}{
2,3
}{
1,3
}
\end
{
dspBlocks
}
\end
{
figure
}
\vspace
{
3em
}
$
\hat
{x}
(
t
)
=
x
(
t
)/
G
+
\sigma
(
t
)
$
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
What happens to analog signals
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[yticks=5,xticks=none,sidegap=0]
{
0,100
}{
-7,7
}
\moocStyle
\only
<1>
{
\dspFunc
{
\tempFun
}}
\only
<2>
{
\dspFunc
{
\tempFun
\atten
}}
\only
<3>
{
\dspFunc
{
\tempFun
\atten
\noise
}}
\end
{
dspPlot
}
\end
{
figure
}
\only
<1>
{
$
x
(
t
)
$
}
\only
<2>
{
$
x
(
t
)/
G
$
}
\only
<3>
{
$
x
(
t
)/
G
+
\sigma
(
t
)
$
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
We can amplify to compensate attenuation
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspBlocks
}{
2
}{
1
}
$
x
(
t
)
$
~~
&
&
\BDadd
&
~~
$
\hat
{x}_
1
(
t
)
$
\\
&
&
\raisebox
{
-1.2em
}{
$
\sigma
(
t
)
$
}
\ncline
{
->
}{
1,1
}{
1,3
}
\taput
{
$
1
/
G
$
}
\ncline
{
->
}{
1,3
}{
1,4
}
\taput
{{
\color
{
red
}
$
G
$
}}
\ncline
{
->
}{
2,3
}{
1,3
}
\end
{
dspBlocks
}
\end
{
figure
}
\vspace
{
3em
}
but:
$
\hat
{x}_
1
(
t
)
=
x
(
t
)
+
{
\color
{red}G}
\sigma
(
t
)
$
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Transmission of analog signals
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[yticks=5,xticks=none,sidegap=0]
{
0,100
}{
-7,7
}
\moocStyle
\only
<1>
{
\dspFunc
{
\tempFun
\atten
\noise
}}
\only
<2>
{
\dspFunc
{
\tempFun
\atten
\noise
\ampli
}}
\end
{
dspPlot
}
\end
{
figure
}
\only
<1>
{
$
x
(
t
)/
G
+
\sigma
(
t
)
$
}
\only
<2>
{
$
\hat
{x}_
1
(
t
)
=
G
[
x
(
t
)/
G
+
\sigma
(
t
)]
=
x
(
t
)
+
G
\sigma
(
t
)
$
}
\end
{
center
}
\end
{
frame
}
%% Atlantic cables
\begin
{
frame
}
[plain]
\begin
{
columns
}
[c]
\begin
{
column
}{
\paperwidth
}
\includegraphics
[width=\paperwidth,height=\paperheight]
{
Atlantic
_
cable
_
Map.eps
}
\par
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
%% Agamemnon
\begin
{
frame
}
[plain]
\begin
{
columns
}
[c]
\begin
{
column
}{
\paperwidth
}
\includegraphics
[width=\paperwidth,height=\paperheight]
{
agam.ps
}
\par
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Transmitting a signal overseas
}
\begin
{
center
}
For a long, long channel we need repeaters
\vspace
{
1em
}
\begin
{
figure
}
\def\ns
{
\raisebox
{
-1.2em
}{
$
\sigma
(
t
)
$
}}
\begin
{
dspBlocks
}{
1
}{
0.5
}
% 1 2 3 4 5 6 7 8 \
$
x
(
t
)
$
~~
&
\BDadd
&
~
$
\hat
{x}_
1
(
t
)
$
~
&
\BDadd
&
~
$
\ldots
$
~
&
\BDadd
&
~~
$
\hat
{x}_N
(
t
)
$
\\
&
\ns
&
&
\ns
&
&
\ns
\BDConnH
{
1
}{
1
}{
2
}{
$
1
/
G
$
}
\BDConnH
{
1
}{
2
}{
3
}{
$
G
$
}
\BDConnH
{
1
}{
3
}{
4
}{
$
1
/
G
$
}
\BDConnH
{
1
}{
4
}{
5
}{
$
G
$
}
\BDConnH
{
1
}{
5
}{
6
}{
$
1
/
G
$
}
\BDConnH
{
1
}{
6
}{
7
}{
$
G
$
}
\BDConnV
{
2
}{
2
}{
1
}{}
\BDConnV
{
2
}{
4
}{
1
}{}
\BDConnV
{
2
}{
6
}{
1
}{}
\end
{
dspBlocks
}
\end
{
figure
}
\vspace
{
3em
}
$
\hat
{x}_N
(
t
)
=
x
(
t
)
+
NG
\sigma
(
t
)
$
\end
{
center
}
\end
{
frame
}
%%Here a slide about long distance communication and repeaters
%\begin{frame}
% \frametitle{Long distance communication}
% \begin{itemize}
% \item Transoceanic cable:
% \begin{itemize}
% \item Cable too long for single transmission
% \item Necessary to have repeaters
% \end{itemize}
% \pause
% \item Block diagram
% \begin{itemize}
% \item Single line with loss of $\alpha$ and noise $\sigma^2$
% \item $N$ pieces with loss of $\alpha/N$ and noise $\sigma^2/N$ (?)
% \item Amplifiers at relays
% \end{itemize}
% \end{itemize}
%\end{frame}
%% Noise amplification
\begin
{
frame
}
\frametitle
{
Transmission of analog signals
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[yticks=5,xticks=none,sidegap=0]
{
0,100
}{
-7,7
}
\moocStyle
\only
<1>
{
\dspFunc
{
\tempFun
}}
\only
<2>
{
\dspFunc
{
\tempFun
\atten
\noise
}}
\only
<3>
{
\dspFunc
{
\tempFun
\atten
\noise
\ampli
}}
\only
<4>
{
\dspFunc
{
\tempFun
\atten
\noise
\ampli
\atten
\noise
}}
\only
<5>
{
\dspFunc
{
\tempFun
\atten
\noise
\ampli
\atten
\noise
\ampli
}}
\only
<6>
{
\dspFunc
{
\tempFun
\atten
\noise
\ampli
\atten
\noise
\ampli
\atten
\noise
\ampli
\atten
\noise
\ampli
\atten
\noise
\ampli
\atten
\noise
\ampli
}}
\end
{
dspPlot
}
\end
{
figure
}
\only
<1>
{
$
x
(
t
)
$
}
\only
<2>
{
$
x
(
t
)/
G
+
\sigma
(
t
)
$
}
\only
<3>
{
$
\hat
{x}_
1
(
t
)
=
G
[
x
(
t
)/
G
+
\sigma
(
t
)]
=
x
(
t
)
+
G
\sigma
(
t
)
$
}
\only
<4>
{
$
\hat
{x}_
1
(
t
)/
G
+
\sigma
(
t
)
$
}
\only
<5>
{
$
\hat
{x}_
2
(
t
)
=
G
[
\hat
{x}_
1
(
t
)/
G
+
\sigma
(
t
)]
=
x
(
t
)
+
2
G
\sigma
(
t
)
$
}
\only
<6>
{
$
\hat
{x}_N
(
t
)
=
x
(
t
)
+
NG
\sigma
(
t
)
$
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
In digital signals we can threshold
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspBlocks
}{
2
}{
1
}
$
x
(
t
)
$
~~
&
&
\BDadd
&
\BDfilter
{
$
|
\cdot
|
$
}
&
~~
$
\hat
{x}_
1
(
t
)
$
\\
&
&
\raisebox
{
-1.2em
}{
$
\sigma
(
t
)
$
}
\ncline
{
->
}{
1,1
}{
1,3
}
\taput
{
$
1
/
G
$
}
\ncline
{
->
}{
1,3
}{
1,4
}
\taput
{
$
G
$
}
\ncline
{
->
}{
1,4
}{
1,5
}
\ncline
{
->
}{
2,3
}{
1,3
}
\end
{
dspBlocks
}
\end
{
figure
}
\vspace
{
3em
}
$
\hat
{x}_
1
(
t
)
=
\mbox
{sgn}
[
x
(
t
)
+
G
\sigma
(
t
)]
$
\end
{
center
}
\end
{
frame
}
%% Rectification
\def\binFun
{
x 23 div cvi 2 mod -2 mul 1 add 5 mul
}
\begin
{
frame
}
\frametitle
{
Transmission of quantized signals
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[yticks=5,xticks=none,sidegap=0]
{
0,99
}{
-7,7
}
\moocStyle
\only
<1>
{
\dspFunc
{
\binFun
}}
\only
<2>
{
\dspFunc
{
\binFun
\atten
\noise
}}
\only
<3>
{
\dspFunc
{
\binFun
\atten
\noise
\ampli
}}
\only
<4>
{
\dspFunc
{
\binFun
}}
\end
{
dspPlot
}
\end
{
figure
}
\only
<1>
{
$
x
(
t
)
$
}
\only
<2>
{
$
x
(
t
)/
G
+
\sigma
(
t
)
$
}
\only
<3>
{
$
G
[
x
(
t
)/
G
+
\sigma
(
t
)]
=
x
(
t
)
+
G
\sigma
(
t
)
$
}
\only
<4>
{
$
\hat
{x}_
1
(
t
)
=
5
\,\mbox
{sgn}
[
x
(
t
)
+
G
\sigma
(
t
)]
$
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Digital data throughputs
}
\begin
{
itemize
}
\item
Transatlantic cable:
\begin
{
itemize
}
\item
1866: 8 words per minute (
$
\approx
$
5 bps)
\item
1956: AT
\&
T, coax, 48 voice channels (
$
\approx
$
3Mbps)
\item
2005: Alcatel Tera10, fiber, 8.4 Tbps (
$
8
.
4
\times
10
^{
12
}
$
bps)
\item
2012: fiber, 60 Tbps
\end
{
itemize
}
\pause
\item
Voiceband modems
\begin
{
itemize
}
\item
1950s: Bell 202, 1200 bps
\item
1990s: V90, 56Kbps
\item
2008: ADSL2+, 24Mbps
\end
{
itemize
}
\end
{
itemize
}
\end
{
frame
}
\cueCard
{
let's try this in Python...
}
\end
{
document
}
Event Timeline
Log In to Comment