Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F104947887
2_bandwidth.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Mar 13, 14:42
Size
9 KB
Mime Type
text/x-tex
Expires
Sat, Mar 15, 14:42 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
24885858
Attached To
R2653 epfl
2_bandwidth.tex
View Options
\documentclass
[aspectratio=169]
{
beamer
}
\def\stylepath
{
../styles
}
\usepackage
{
\stylepath
/com303
}
\begin
{
document
}
\begin
{
frame
}
\frametitle
{
First problem: the bandwidth constraint
}
\intro
{
we need to squeeze the spectral support over the allotted bandwidth. We need multirate processing to do so
}
\centering
\uncover
<2>
{
$
a
[
n
]
$
white:
$
P_a
(
e^{j
\omega
}
)
=
\sigma
_a^
2
$
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=3cm,xtype=freq,xticks=1,yticks=custom]
{
-1,1
}{
0,1.2
}
\moocStyle
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(.25,-.05)(.6,0.05)
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(-.25,-.05)(-.6,0.05)
\only
<2>
{
\dspFunc
{
1
}}
\dspCustomTicks
[axis=x]
{
.25
$
\omega
_{
\min
}
$
.6
$
\omega
_{
\max
}
$
}
\dspCustomTicks
[axis=y]
{
0 0 1
$
\sigma
_a^
2
$
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Shaping the bandwidth
}
Our problem:
\begin
{
itemize
}
[<+->]
\item
bandwidth constraint requires us to control the spectral support of a signal
\item
we need to be able to ``shrink'' the support of a full-band signal
\item
the answer is
{
\em
multirate
}
\/
techniques
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
ideal digital interpolator
}
\center
\begin
{
figure
}
\begin
{
dspBlocks
}{
1.3
}{
0.6
}
$
x
[
n
]
$
&
\BDupsmp
{
N
}
&
\BDfilter
{
LP
$
\{\pi
/
N
\}
$
}
&
$
y
[
n
]
$
\psset
{
arrows=->,linewidth=1.5pt
}
\ncline
{
1,1
}{
1,2
}
\ncline
{
-
}{
1,2
}{
1,3
}
\ncline
{
1,3
}{
1,4
}
\end
{
dspBlocks
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Upsampling by
$
K
=
3
$
}
\setbeamercovered
{
invisible
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=1.25cm,xtype=freq,xticks=2,yticks=1,ylabel=
{
$
X
(
e^{j
\omega
}
)
$
}
]
{
-1,1
}{
0,1.2
}
\moocStyle
\dspFunc
{
x
\dspPeriodize
\dspPorkpie
{
0
}{
.75
}}
\dspCustomTicks
[axis=x]
{
.75
$
3
\pi
/
4
$
}
\end
{
dspPlot
}
\uncover
<2->
{
\begin
{
dspPlot
}
[height=1.25cm,xtype=freq,xticks=1,yticks=1,ylabel=
{
$
X
(
e^{j
\omega
}
)
$
}
]
{
-5,5
}{
0,1.2
}
\moocStyle
\dspFunc
{
x
\dspPeriodize
\dspPorkpie
{
0
}{
.75
}}
\dspMainPeriod
\pnode
(-3,0)
{
leftA
}
\pnode
(3,0)
{
rightA
}
\end
{
dspPlot
}}
\uncover
<3->
{
\begin
{
dspPlot
}
[height=1.25cm,xtype=freq,xticks=2,yticks=1,ylabel=
{
$
X_{U}
(
e^{j
\omega
}
)
$
}
]
{
-1,1
}{
0,1.2
}
\pnode
(-1,1.2)
{
leftB
}
\pnode
( 1,1.2)
{
rightB
}
\psset
{
linecolor=orange
}
\ncline
[linewidth=2pt]
{
leftA
}{
rightA
}
\ncline
[linewidth=1pt,linestyle=dashed]
{
->
}{
leftA
}{
leftB
}
\ncline
[linewidth=1pt,linestyle=dashed]
{
->
}{
rightA
}{
rightB
}
\moocStyle
\only
<4-5>
{
\dspFunc
{
x 3 mul
\dspPeriodize
\dspPorkpie
{
0
}{
.75
}}}
\only
<5>
{
\dspFunc
[linecolor=green,linestyle=dashed]
{
x
\dspRect
{
0
}{
0.66666
}}}
\only
<6->
{
\dspFunc
{
x 3 mul
\dspPorkpie
{
0
}{
.75
}}
\dspCustomTicks
[axis=x]
{
.25
$
\pi
/
4
$
}}
\end
{
dspPlot
}}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Fulfilling the bandwidth constraint
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=3cm,xticks=custom,yticks=none,sidegap=0]
{
0,5
}{
0,1.1
}
\moocStyle
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(1,0)(2.4,0.5)
\dspCustomTicks
[axis=x]
{
0 0 1
$
F_{
\min
}
$
2.4
$
F_{
\max
}
$
}
\dspCustomTicks
[axis=x]
{
4
$
{
\color
{red}F_s
/
2
}
$
}
\psbrace
[braceWidth=0.5pt,braceWidthOuter=3pt,rot=90,nodesepB=10pt]
(1,-.3)(2.4,-.3)
{
$
W
$
}
%
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Fulfilling the bandwidth constraint
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=3cm,xticks=1,xtype=freq,yticks=none]
{
0,1
}{
0,1.1
}
\moocStyle
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(.25,0)(.6,0.5)
\dspCustomTicks
[axis=x]
{
.25
$
\omega
_{
\min
}
$
.6
$
\omega
_{
\max
}
$
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Here's a neat trick
}
let
$
W
=
F_{
\max
}
-
F_{
\min
}
$
; pick
$
F_s
$
so that:
\begin
{
itemize
}
[<+->]
\item
$
F_s >
2
F_{
\max
}
$
(obviously)
\item
$
F_s
=
KW
$
,
$
K
\in
\mathbb
{N}
$
\vspace
{
2em
}
\item
$
\displaystyle
\omega
_{
\max
}
-
\omega
_{
\min
}
=
2
\pi\frac
{W}{F_s}
=
\frac
{
2
\pi
}{K}
$
\item
we can simply upsample by
$
K
$
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Baud rate
}
\begin
{
itemize
}
[<+->]
\item
upsampling does not change the
{
\em
data
}
\/
rate, only the sample rate
\item
we produce (and transmit)
$
W
$
symbols per second
\item
$
W
$
is sometimes called the Baud rate of the system and is equal to the available bandwidth
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Fulfilling the bandwidth constraint
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=3cm,xtype=freq,xticks=1,yticks=1]
{
-1,1
}{
0,1.2
}
\moocStyle
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(.25,-.05)(.6,0.05)
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(-.25,-.05)(-.6,0.05)
\only
<2>
{
\dspFunc
{
1
}}
\only
<3>
{
\dspFunc
{
x
\dspRect
{
0
}{
.35
}
}}
\only
<4>
{
\dspFunc
{
x
\dspRect
{
.425
}{
.35
}
x
\dspRect
{
-.425
}{
.35
}
add 2 div
}}
\dspCustomTicks
[axis=x]
{
.25
$
\omega
_{
\min
}
$
.425
$
\omega
_c
$
.6
$
\omega
_{
\max
}
$
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Transmitter design, continued
}
\begin
{
figure
}
\psset
{
linearc=0.2
}
\begin
{
dspBlocks
}{
1.0
}{
0.8
}
\parbox
{
4ex
}{
\small
\tt
\bf
..01100
\\
01010...
}
\hspace
{
5ex
}
&
\BDfilter
{
Scrambler
}
&
\BDfilter
{
Mapper
}
&
[name=A,mnode=circle]
$
K
\uparrow
$
\\
&
&
\ncline
{
->
}{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
1,3
}
\ncline
{
->
}{
1,3
}{
1,4
}^{
~~~~
$
a
[
n
]
$
}
\end
{
dspBlocks
}
\begin
{
dspBlocks
}{
1.2
}{
0.4
}
&
[name=B]
\BDlowpass
[0.5em]
&
\BDmul
&
\BDfilter
{
D/A
}
&
$
s
(
t
)
$
\\
&
&
$
\cos\omega
_c n
$
&
$
F_s
=
KW
$
\ncline
{
->
}{
1,2
}{
1,3
}^{
$
b
[
n
]
$
}
\ncline
{
->
}{
1,3
}{
1,4
}^{
$
s
[
n
]
$
}
\ncline
{
->
}{
1,4
}{
1,5
}
\ncline
{
->
}{
1,5
}{
1,6
}
\ncline
{
->
}{
1,6
}{
1,7
}
\ncline
{
->
}{
2,3
}{
1,3
}
\end
{
dspBlocks
}
\ncbarr
[angleA=0,arm=1cm,linewidth=1.2pt]
{
A
}{
B
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Raised Cosine
}
\[
H_{K,
\beta
}
(
e^{j
\omega
}
)
=
\begin
{cases}
\displaystyle
1
& |
\omega
|
\le
\displaystyle\frac
{
\pi
(
1
-
\beta
)
}{K}
\\
\frac
{
1
}{
2
}
\left
(
1
+
\cos\left
(
\displaystyle\frac
{K|
\omega
|
-
(
1
-
\beta
)
\pi
}{
\beta
}
\right
)
\right
)
&
\displaystyle\frac
{
\pi
(
1
-
\beta
)
}{K}
\le
|
\omega
|
\le
\displaystyle\frac
{
\pi
(
1
+
\beta
)
}{K}
\\
0
& |
\omega
| >
\displaystyle\frac
{
\pi
(
1
+
\beta
)
}{K}
\end
{cases}
\]
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Raised Cosine
}
\center
$
H_{
2
,
\beta
}
(
e^{j
\omega
}
)
$
\begin
{
figure
}
\begin
{
dspPlot
}
[xtype=freq]
{
-1,1
}{
0,1.1
}
\smallStems
\only
<1->
{
\dspFunc
[linecolor=red]
{
x
\dspRaisedCos
{
0.5
}{
0.1
}}}
\only
<2->
{
\dspFunc
[linecolor=green]
{
x
\dspRaisedCos
{
0.5
}{
0.2
}}}
\only
<3->
{
\dspFunc
[linecolor=blue]
{
x
\dspRaisedCos
{
0.5
}{
0.3
}}}
\only
<4->
{
\dspFunc
[linecolor=cyan]
{
x
\dspRaisedCos
{
0.5
}{
0.4
}}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Raised Cosine
}
\[
h_{K,
\beta
}
[
nK
]
=
\begin
{cases}
1
& n
=
0
\\
0
&
\mbox
{otherwise}
\end
{cases}
\]
\vspace
{
2em
}
\[
h_{K,
\beta
}
[
nK
]
\propto
\frac
{
1
}{
(
\beta
n
)
^
2
}
\]
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Raised Cosine:
$
1
/
n^
2
$
decay
}
\center
$
h_{
2
,
\beta
}
[
n
]
$
\begin
{
figure
}
\begin
{
dspPlot
}{
-20,20
}{
-0.2,0.6
}
\moocStyle
\dspTaps
{
-20 -0.0000 -19 -0.0063 -18 0.0000 -17 0.0088 -16 -0.0000 -15 -0.0120 -14 0.0000 -13 0.0161 -12 -0.0000 -11 -0.0216 -10 0.0000 -9 0.0291 -8 -0.0000 -7 -0.0405 -6 0.0000 -5 0.0600 -4 -0.0000 -3 -0.1039 -2 0.0000 -1 0.3176 0 0.5000 1 0.3176 2 0.0000 3 -0.1039 4 -0.0000 5 0.0600 6 0.0000 7 -0.0405 8 -0.0000 9 0.0291 10 0.0000 11 -0.0216 12 -0.0000 13 0.0161 14 0.0000 15 -0.0120 16 -0.0000 17 0.0088 18 0.0000 19 -0.0063 20 -0.0000
}
%\only<2->{\dspFunc[linecolor=green,linestyle=dashed]{x \dspSinc{0}{2} 0.5 mul}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Spectral shaping with raised cosine
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=3cm,xtype=freq,xticks=1,yticks=1]
{
-1,1
}{
0,1.2
}
\moocStyle
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(.25,-.05)(.6,0.05)
\psframe
[fillstyle=vlines,linecolor=green!70,hatchcolor=green!70,hatchangle=20]
(-.25,-.05)(-.6,0.05)
\dspFunc
{
x
\dspRaisedCosine
{
.425
}{
.175
}{
0.2
}
x
\dspRaisedCosine
{
-.425
}{
.175
}{
0.2
}
add 2 div
}
\dspCustomTicks
[axis=x]
{
.25
$
\omega
_{
\min
}
$
.6
$
\omega
_{
\max
}
$
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\end
{
document
}
\begin
{
figure
}
\psset
{
linearc=0.2
}
\begin
{
dspBlocks
}{
1.0
}{
0.8
}
\parbox
{
4ex
}{
\small
\tt
\bf
..01100
\\
01010...
}
\hspace
{
5ex
}
&
\BDfilter
{
Scrambler
}
&
\BDfilter
{
Mapper
}
&
[name=A,mnode=circle]
$
K
\uparrow
$
\\
&
&
\ncline
{
->
}{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
1,3
}
\ncline
{
->
}{
1,3
}{
1,4
}^{
~~~~
$
a
[
n
]
$
}
\end
{
dspBlocks
}
\begin
{
dspBlocks
}{
1.2
}{
0.4
}
&
[name=B]
\BDfilter
{
$
G
(
z
)
$
}
&
\BDmul
&
\BDfilter
{
Re
}
&
\BDfilter
{
$
I
(
t
)
$
}
&
$
s
(
t
)
$
\\
&
&
$
e^{j
\omega
_c n}
$
\ncline
{
->
}{
1,2
}{
1,3
}^{
$
b
[
n
]
$
}
\ncline
{
->
}{
1,3
}{
1,4
}^{
$
c
[
n
]
$
}
\ncline
{
->
}{
1,4
}{
1,5
}^{
$
s
[
n
]
$
}
\ncline
{
->
}{
1,5
}{
1,6
}
\ncline
{
->
}{
1,6
}{
1,7
}
\ncline
{
->
}{
2,3
}{
1,3
}
\end
{
dspBlocks
}
\ncbarr
[angleA=0,arm=1cm,linewidth=1.2pt]
{
A
}{
B
}
\end
{
figure
}
Event Timeline
Log In to Comment