Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F106926068
Inverse.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Apr 2, 14:53
Size
14 KB
Mime Type
text/x-c
Expires
Fri, Apr 4, 14:53 (9 h, 18 m)
Engine
blob
Format
Raw Data
Handle
25307486
Attached To
rLAMMPS lammps
Inverse.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H
namespace Eigen {
namespace internal {
/**********************************
*** General case implementation ***
**********************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialPivLu().inverse();
}
};
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
/****************************
*** Size 1 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.coeff(0,0);
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
/****************************
*** Size 2 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
inline void compute_inverse_size2_helper(
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
compute_inverse_size2_helper(matrix, invdet, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size2_helper(matrix, invdet, inverse);
}
};
/****************************
*** Size 3 implementation ***
****************************/
template<typename MatrixType, int i, int j>
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
enum {
i1 = (i+1) % 3,
i2 = (i+2) % 3,
j1 = (j+1) % 3,
j2 = (j+2) % 3
};
return m.coeff(i1, j1) * m.coeff(i2, j2)
- m.coeff(i1, j2) * m.coeff(i2, j1);
}
template<typename MatrixType, typename ResultType>
inline void compute_inverse_size3_helper(
const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
ResultType& result)
{
result.row(0) = cofactors_col0 * invdet;
result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
const Scalar invdet = Scalar(1) / det;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
invertible = abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
};
/****************************
*** Size 4 implementation ***
****************************/
template<typename Derived>
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
return matrix.coeff(i1,j1)
* (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
}
template<typename MatrixType, int i, int j>
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
enum {
i1 = (i+1) % 4,
i2 = (i+2) % 4,
i3 = (i+3) % 4,
j1 = (j+1) % 4,
j2 = (j+2) % 4,
j3 = (j+3) % 4
};
return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
+ general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
+ general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
}
template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
static void run(const MatrixType& matrix, ResultType& result)
{
result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 4>
: compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
MatrixType, ResultType>
{
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
}
};
/*************************
*** MatrixBase methods ***
*************************/
template<typename MatrixType>
struct traits<inverse_impl<MatrixType> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
template<typename MatrixType>
struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
{
typedef typename MatrixType::Index Index;
typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
MatrixTypeNested m_matrix;
inverse_impl(const MatrixType& matrix)
: m_matrix(matrix)
{}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(Size);
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
}
};
} // end namespace internal
/** \lu_module
*
* \returns the matrix inverse of this matrix.
*
* For small fixed sizes up to 4x4, this method uses cofactors.
* In the general case, this method uses class PartialPivLU.
*
* \note This matrix must be invertible, otherwise the result is undefined. If you need an
* invertibility check, do the following:
* \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
* \li for the general case, use class FullPivLU.
*
* Example: \include MatrixBase_inverse.cpp
* Output: \verbinclude MatrixBase_inverse.out
*
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
{
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
eigen_assert(rows() == cols());
return internal::inverse_impl<Derived>(derived());
}
/** \lu_module
*
* Computation of matrix inverse and determinant, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param determinant Reference to the variable in which to store the determinant.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
*
* \sa inverse(), computeInverseWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
// for 2x2, it's worth giving a chance to avoid evaluating.
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename internal::conditional<
RowsAtCompileTime == 2,
typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
PlainObject
>::type MatrixType;
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
}
/** \lu_module
*
* Computation of matrix inverse, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseWithCheck.out
*
* \sa inverse(), computeInverseAndDetWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
RealScalar determinant;
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
}
} // end namespace Eigen
#endif // EIGEN_INVERSE_H
Event Timeline
Log In to Comment