Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110515228
ensemble-cv3D.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Apr 26, 16:29
Size
3 KB
Mime Type
text/x-python
Expires
Mon, Apr 28, 16:29 (1 d, 16 h)
Engine
blob
Format
Raw Data
Handle
25803477
Attached To
R8800 solar_potential
ensemble-cv3D.py
View Options
# coding: utf-8
# In[1]:
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.colors
import
LinearSegmentedColormap
import
pandas
as
pd
import
xarray
as
xr
import
os
import
sys
import
time
import
hpelm
import
util
from
ds
import
Dataset
from
tables
import
open_file
,
Atom
,
Filters
import
csv
from
sklearn.metrics
import
mean_squared_error
as
mse
# In[2]:
# data_path = os.path.abspath("/Users/alinawalch/Documents/EPFL/data/meteo")
data_path
=
os
.
path
.
abspath
(
"/mnt/sda1/hyenergy/data/meteo"
)
dsname
=
'2001_sample1M_SIS_3D'
queryname
=
'query_locs_13d_500'
t_nodes
=
'sigm'
# In[3]:
tt
=
util
.
Timer
()
my_ds
=
Dataset
(
data_path
,
dsname
,
queryname
)
my_ds
.
get_matrices
([
'train'
,
'test'
,
'query'
])
tt
.
stop
(
print_wallclock
=
False
)
# In[4]:
data
=
np
.
vstack
([
my_ds
.
train_x
,
my_ds
.
test_x
])
targets
=
np
.
vstack
([
my_ds
.
train_t
,
my_ds
.
test_t
])
n
=
data
.
shape
[
0
]
nf
=
data
.
shape
[
1
]
nt
=
targets
.
shape
[
1
]
# In[12]:
n_nodes_lists
=
[
200
,
400
,
1000
,
2000
,
5000
,
10000
]
ensemble_size_lists
=
[
200
,
100
,
100
,
50
,
50
,
20
]
k
=
1
# In[13]:
for
n_nodes
,
ensemble_size
in
zip
(
n_nodes_lists
,
ensemble_size_lists
):
modelname
=
(
'ELM_ens
%d
_node
%d
_k
%d
'
%
(
ensemble_size
,
n_nodes
,
k
))
my_ds
.
add_model
(
modelname
,
queryname
)
print
(
'model added'
)
ind
=
np
.
random
.
permutation
(
n
)
# get set of indices for each split:
val_end
=
int
(
0.2
*
n
)
val
=
data
[:
val_end
]
val_t
=
targets
[:
val_end
]
train
=
data
[
val_end
:]
train_t
=
targets
[
val_end
:]
print
(
'made training and validation data'
)
train_F
=
os
.
path
.
join
(
my_ds
.
train_path_out
,(
'train_x.hdf5'
))
train_X
=
os
.
path
.
join
(
my_ds
.
train_path_out
,(
'train_x_2.hdf5'
))
val_F
=
os
.
path
.
join
(
my_ds
.
train_path_out
,(
'val_x.hdf5'
))
train_T
=
os
.
path
.
join
(
my_ds
.
train_path_out
,(
'train_t.hdf5'
))
util
.
make_hdf5
(
train
,
train_F
)
util
.
make_hdf5
(
train
,
train_X
)
util
.
make_hdf5
(
val
,
val_F
)
util
.
make_hdf5
(
train_t
,
train_T
)
train_y
=
np
.
zeros
(
train_t
.
shape
)
val_y
=
np
.
zeros
(
val_t
.
shape
)
for
m
in
range
(
ensemble_size
):
t_train
=
util
.
Timer
()
print
(
'training model
%d
'
%
m
)
model
=
hpelm
.
hp_elm
.
HPELM
(
nf
,
nt
)
model
.
add_neurons
(
n_nodes
,
t_nodes
)
model
.
train
(
train_X
,
train_T
)
model
.
save
(
os
.
path
.
join
(
my_ds
.
model_path
,
(
'model_
%d
'
%
(
m
))))
t_train
.
stop
()
t_pred
=
util
.
Timer
()
y_train_tmp
=
model
.
predict
(
train_F
)
train_y
=
train_y
+
y_train_tmp
err_train
=
mse
(
train_y
/
(
m
+
1
),
train_t
)
print
(
'Train error:
%f
'
%
err_train
)
y_val_tmp
=
model
.
predict
(
val_F
)
val_y
=
val_y
+
y_val_tmp
err_val
=
mse
(
val_y
/
(
m
+
1
),
val_t
)
print
(
'Validation error:
%f
'
%
err_val
)
t_pred
.
stop
()
with
open
(
os
.
path
.
join
(
my_ds
.
model_path
,(
'ensemble_err.csv'
)),
'a'
)
as
csvfile
:
w
=
csv
.
writer
(
csvfile
,
delimiter
=
','
)
w
.
writerow
([
m
,
err_train
,
err_val
])
with
open
(
os
.
path
.
join
(
my_ds
.
model_path
,(
'ensemble_time.csv'
)),
'a'
)
as
csvfile
:
w
=
csv
.
writer
(
csvfile
,
delimiter
=
','
)
w
.
writerow
([
m
,
t_train
.
cputime
,
t_pred
.
cputime
])
Event Timeline
Log In to Comment