Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F111380121
finalSol.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, May 1, 05:24
Size
5 KB
Mime Type
text/x-tex
Expires
Sat, May 3, 05:24 (4 h, 44 m)
Engine
blob
Format
Raw Data
Handle
25886222
Attached To
R2653 epfl
finalSol.tex
View Options
\documentclass[a4paper,11pt]{article}
\usepackage{defsDSPcourse}
\usepackage{dspTricks,dspBlocks,dspFunctions}
\begin{document}
\begin{center}%
\sffamily
{\LARGE \bfseries COM-303 - Signal Processing for Communications \\ Final Exam - Solution} \\
\vspace{1em}
{\large Tuesday, July 3 2012, 08:15 to 11:15}
\vspace{1em}
\end{center}
\begin{exercise}[Problem]{(5 points)}
\[
X(-e^{j\omega}) = X(e^{-j\pi}e^{j\omega}) = X(e^{j(\omega - \pi)}):
\]
\begin{center}
\begin{dspPlot}[xtype=freq,width=8cm,height=3cm,xticks=4]{-1,1}{0,1.1}
\dspFunc{x \dspQuad{0.75}{0.1} x \dspQuad{-0.75}{0.1} add }
\end{dspPlot}
\end{center}
\end{exercise}
\begin{exercise}[Problem]{(5 points)}
The filter is clearly not equiripple, therefore it's not optimal in the Parks-McClellan sense.
\end{exercise}
\begin{exercise}[Problem]{(10 points)}
\begin{enumerate}
\item simply check that {\tt det([x0'; x1'; x2'; x3'])} is nonzero
\item no, $\langle \mathbf{x}_0, \mathbf{x}_1 \rangle = -1 \neq 0$
\item $\langle \mathbf{y}, \mathbf{x}_1 \rangle = 2$, the other products are zero
\end{enumerate}
\end{exercise}
\begin{exercise}[Problem]{(10 points)}
\begin{enumerate}
\item by delaying all terms:
\[
y[n-1] = y[n] + by[n-2] + x[n-1]
\]
from which
\[
H(z) = \frac{-z^{-1}}{1 - z^{-1} + bz^{-2}}
\]
\item the poles of the transfer function are
\[
p_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} - b}
\]
and we want $|p_{1,2}| < 1$.
For $b < 1/4$ the square root is real and therefore:
\[
|p_1| < 1 \mbox{ for } \sqrt{1/4 - b} < 1/2 \Rightarrow 0 < b < 1/4\\
\]
\[
|p_2| < 1 \mbox{ for } \sqrt{1/4 - b} < -3/2 \Rightarrow -2 < b < 1/4
\]
For $b > 1/4$ the square root is imaginary and $|p_{1,2}|^2 = b$ so that:
\[
|p_{1,2}| < 1 \mbox{ for } 1/4 < b < 1\\
\]
so that in the end the system is stable for $0 < b < 1$
\end{enumerate}
\end{exercise}
\begin{exercise}[Problem]{(5 points)}
\begin{enumerate}
\item The Hilbert filter rotates a sinusoid by $\pi/2$ so that $\cos(\omega n) \ast h[n] = \sin \omega n$. Therefore
\[
y[n] = \cos \omega_c n + j \sin \omega_c n = e^{j\omega_c n}
\]
\item
\begin{center}
\begin{dspPZPlot}[width=6cm]{1.5}
\multido{\n=1+1}{10}{%
\FPupn\X{\n{} 0.7854 * cos}\FPupn\Y{\n{} 0.7854 * sin}%
\dspPZ[type=zero,label={$x[\n]$}]{\X,\Y}}
\end{dspPZPlot}
\end{center}
\end{enumerate}
\end{exercise}
\newpage
\begin{exercise}[Problem]{(15 points)}
The power of the signal is simply the variance of the input distribution:
\[
P_x = \frac{10^2}{12}
\]
The power of the quantization error is
\[
P_e = \mbox{E}[(x-\hat{x})^2] = \int_{-5}^{5}p(x)(x - \mathcal{Q}\{x\})^2 dx
\]
Exploiting symmetries
\[
P_e = \frac{1}{5}\int_{0}^{2}(x-1)^2 dx + \frac{1}{5}\int_{2}^{3}(x-3)^2 dx = \frac{11}{15}
\]
so that
\[
\mbox{SNR} = \frac{125}{11}
\]
\end{exercise}
\begin{exercise}[Problem]{(20 points)}
\begin{enumerate}
\item The song, converted to digital, must be ``accelerated'' by a factor of $8/7$, i.e., upsampled by 7 and downsampled by 8. The following scheme can be used:
\begin{dspBlocks}{1}{0.4}
$x(t)$ & \BDsampler & \BDupsmp{7} & \BDfilter{LP$\{\pi/8\}$} & \BDdwsmp{8} & \BDfilter{Int} & $y(t)$
\BDConnHNext{1}{1}\BDConnHNext{1}{2}\BDConnHNext{1}{3}\BDConnHNext{1}{4}\BDConnHNext{1}{5}\BDConnHNext{1}{6}
\end{dspBlocks}
where sampling and interpolator work at least at $F_s = 40$KHz
\item $440\cdot (8/7) \approx 503$Hz, almost a full tone up.
\end{enumerate}
\end{exercise}
\begin{exercise}[Problem]{(20 points)}
\begin{enumerate}
\item
\[
H(z) = \frac{3 - 8z^{-1} + 4z^{-2}}{3 + z^{-2}} = \frac{(1 - (2/3)z^{-1})(1 - 2z^{-1})}{(1-(j/\sqrt{3})z^{-1})(1+(j/\sqrt{3})z^{-1})}
\]
poles are inside the unit circle but one zero is not.
\item Since in the inverse systems zeros become poles, the pole in $z = 2$ makes the system unstable.
\item
\[
H(z) = \frac{(1 - (2/3)z^{-1})(1 - 2z^{-1})}{3 + z^{-2}}\frac{2-z^{-1}}{2-z^{-1}} =
\frac{(1 - (2/3)z^{-1})(2-z^{-1})}{3 + z^{-2}}\,\frac{1 - 2z^{-1}}{2-z^{-1}}
\]
where $(1 - 2z^{-1})/(2-z^{-1})$ is a classic allpass term.
\item
\[
G(z) = 1/H_m(z) = \frac{3 + z^{-2}}{(1 - (2/3)z^{-1})(2-z^{-1})}
\]
\end{enumerate}
\end{exercise}
\begin{exercise}[Problem]{(10 points)}
\def\oneShotSpec{\dspQuad{0}{\specHW}}
\def\aliasedSpec{%
x -6 sub \oneShotSpec %
x -4 sub \oneShotSpec %
x -2 sub \oneShotSpec %
x \oneShotSpec %
x 2 sub \oneShotSpec %
x 4 sub \oneShotSpec %
x 6 sub \oneShotSpec %
add add add add add add}
\begin{enumerate}
\item
\begin{center}
\begin{dspPlot}[xtype=freq,yticks=none,width=8cm,height=3cm]{-1,1}{0,2}
\def\specHW{1 }
\dspFunc{x \oneShotSpec}
\end{dspPlot}
\end{center}
\item
\begin{center}
\begin{dspPlot}[xtype=freq,yticks=none,width=8cm,height=3cm]{-1,1}{0,2}
\def\specHW{2 }
\dspFunc{\aliasedSpec}
\end{dspPlot}
\end{center}
\item
\begin{center}
\begin{dspPlot}[xtype=freq,yticks=none,width=8cm,height=3cm]{-1,1}{0,2}
\def\specHW{2 }
\dspFunc{\aliasedSpec}
\end{dspPlot}
\end{center}
\item
\begin{center}
\begin{dspPlot}[xtype=freq,yticks=none,width=8cm,height=3cm]{-1,1}{0,2}
\def\specHW{2 }
\dspFunc{x \oneShotSpec}
\end{dspPlot}
\end{center}
\end{enumerate}
\end{exercise}
\end{document}
Event Timeline
Log In to Comment