Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F118855514
atom_modify.html
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jun 22, 14:36
Size
3 KB
Mime Type
text/html
Expires
Tue, Jun 24, 14:36 (1 d, 18 h)
Engine
blob
Format
Raw Data
Handle
26895451
Attached To
rLAMMPS lammps
atom_modify.html
View Options
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>atom_modify command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>atom_modify keyword value ...
</PRE>
<UL><LI>one or more keyword/value pairs may be appended
<LI>keyword = <I>map</I> or <I>first</I>
<PRE> <I>map</I> value = <I>array</I> or <I>hash</I>
<I>first</I> value = group-ID = group whose atoms will appear first in internal atom lists
</PRE>
</UL>
<P><B>Examples:</B>
</P>
<PRE>atom_modify map hash
atom_modify first colloid
</PRE>
<P><B>Description:</B>
</P>
<P>Modify properties of the atom style selected within LAMMPS.
</P>
<P>The <I>map</I> keyword determines how atom ID lookup is done for molecular
problems. Lookups are performed by bond (angle, etc) routines in
LAMMPS to find the local atom index associated with a global atom ID.
When the <I>array</I> value is used, each processor stores a lookup table
of length N, where N is the total # of atoms in the system. This is
the fastest method for most simulations, but a processor can run out
of memory to store the table for very large simulations. The <I>hash</I>
value uses a hash table to perform the lookups. This method can be
slightly slower than the <I>array</I> method, but its memory cost is
proportional to N/P on each processor, where P is the total number of
processors running the simulation.
</P>
<P>The <I>first</I> keyword allows a <A HREF = "group.html">group</A> to be specified whose
atoms will be maintained as the first atoms in each processor's list
of owned atoms. This in only useful when the specified group is a
small fraction of all the atoms, and there are other operations LAMMPS
is performing that will be sped-up significantly by being able to loop
over the smaller set of atoms. Otherwise the reordering required by
this option will be a net slow-down. The <A HREF = "neigh_modify.html">neigh_modify
include</A> and <A HREF = "communicate.html">communicate group</A>
commands are two examples of commands that require this setting to
work efficiently. Several <A HREF = "fix.html">fixes</A>, most notably time
integration fixes like <A HREF = "fix_nve.html">fix nve</A>, also take advantage of
this setting if the group they operate on is the group specified by
this command.
</P>
<P>Note that because the atom_modify command must be used in an input
script before a simulation is setup and groups are defined, this means
the <I>first</I> keyword will specify a group that is not yet defined.
This is OK; LAMMPS will check that the group exists before the first
simulation is performed.
</P>
<P><B>Restrictions:</B>
</P>
<P>This command must be used before the simulation box is defined by a
<A HREF = "read_data.html">read_data</A> or <A HREF = "create_box.html">create_box</A> command.
</P>
<P><B>Related commands:</B> none
</P>
<P><B>Default:</B>
</P>
<P>By default, atomic (non-molecular) problems do not allocate maps. For
molecular problems, the option default is map = array. By default,
first = all.
</P>
</HTML>
Event Timeline
Log In to Comment