Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120055894
Quaternion.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jul 1, 15:55
Size
33 KB
Mime Type
text/x-c++
Expires
Thu, Jul 3, 15:55 (1 d, 6 h)
Engine
blob
Format
Raw Data
Handle
27132578
Attached To
rDLMA Diffusion limited mixed aggregation
Quaternion.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
namespace Eigen {
/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/
namespace internal {
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct quaternionbase_assign_impl;
}
/** \geometry_module \ingroup Geometry_Module
* \class QuaternionBase
* \brief Base class for quaternion expressions
* \tparam Derived derived type (CRTP)
* \sa class Quaternion
*/
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
public:
typedef RotationBase<Derived, 3> Base;
using Base::operator*;
using Base::derived;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::traits<Derived>::Coefficients Coefficients;
typedef typename Coefficients::CoeffReturnType CoeffReturnType;
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
Scalar&, CoeffReturnType>::type NonConstCoeffReturnType;
enum {
Flags = Eigen::internal::traits<Derived>::Flags
};
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
/** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
/** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
/** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */
EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */
EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */
EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template<class OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const
{ return coeffs() == other.coeffs(); }
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template<class OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const
{ return coeffs() != other.coeffs(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
/** return the result vector of \a v through the rotation*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const;
#else
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline
typename internal::enable_if<internal::is_same<Scalar,NewScalarType>::value,const Derived&>::type cast() const
{
return derived();
}
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline
typename internal::enable_if<!internal::is_same<Scalar,NewScalarType>::value,Quaternion<NewScalarType> >::type cast() const
{
return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>());
}
#endif
#ifndef EIGEN_NO_IO
friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) {
s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w();
return s;
}
#endif
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
# include EIGEN_QUATERNIONBASE_PLUGIN
#endif
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase)
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
* like Euler angles or 3x3 matrices, quaternions offer the following advantages:
* \li \b compact storage (4 scalars)
* \li \b efficient to compose (28 flops),
* \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
* \li \c Quaterniond for \c double
*
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
*
* \sa class AngleAxis, class Transform
*/
namespace internal {
template<typename _Scalar,int _Options>
struct traits<Quaternion<_Scalar,_Options> >
{
typedef Quaternion<_Scalar,_Options> PlainObject;
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
enum{
Alignment = internal::traits<Coefficients>::Alignment,
Flags = LvalueBit
};
};
}
template<typename _Scalar, int _Options>
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
{
public:
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
typedef _Scalar Scalar;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
using Base::operator*=;
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
typedef typename Base::AngleAxisType AngleAxisType;
/** Default constructor leaving the quaternion uninitialized. */
EIGEN_DEVICE_FUNC inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
*
* \warning Note the order of the arguments: the real \a w coefficient first,
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
/** Constructs and initialize a quaternion from the array data */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */
template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
*/
template<typename Derived>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Explicit copy constructor with scalar conversion */
template<typename OtherScalar, int OtherOptions>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
#if EIGEN_HAS_RVALUE_REFERENCES
// We define a copy constructor, which means we don't get an implicit move constructor or assignment operator.
/** Default move constructor */
EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
: m_coeffs(std::move(other.coeffs()))
{}
/** Default move assignment operator */
EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
{
m_coeffs = std::move(other.coeffs());
return *this;
}
#endif
EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
#ifdef EIGEN_QUATERNION_PLUGIN
# include EIGEN_QUATERNION_PLUGIN
#endif
protected:
Coefficients m_coeffs;
#ifndef EIGEN_PARSED_BY_DOXYGEN
static EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
};
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
};
}
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
enum {
Flags = TraitsBase::Flags & ~LvalueBit
};
};
}
/** \ingroup Geometry_Module
* \brief Quaternion expression mapping a constant memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
{
public:
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
protected:
const Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* \brief Expression of a quaternion from a memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
{
public:
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
protected:
Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* Map an unaligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, 0> QuaternionMapf;
/** \ingroup Geometry_Module
* Map an unaligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, 0> QuaternionMapd;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/
// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal {
template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
);
}
};
}
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
typename internal::traits<Derived>::Scalar>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
derived() = derived() * other.derived();
return derived();
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion2: 30n
* - Via a Matrix3: 24 + 15n
*/
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the literature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv = this->vec().cross(v);
uv += uv;
return v + this->w() * uv + this->vec().cross(uv);
}
template<class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
coeffs() = other.coeffs();
return derived();
}
template<class Derived>
template<class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return derived();
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
EIGEN_USING_STD(cos)
EIGEN_USING_STD(sin)
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = cos(ha);
this->vec() = sin(ha) * aa.axis();
return derived();
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to a quaternion
*/
template<class Derived>
template<class MatrixDerived>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
return derived();
}
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
* be normalized, otherwise the result is undefined.
*/
template<class Derived>
EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
QuaternionBase<Derived>::toRotationMatrix(void) const
{
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
const Scalar tx = Scalar(2)*this->x();
const Scalar ty = Scalar(2)*this->y();
const Scalar tz = Scalar(2)*this->z();
const Scalar twx = tx*this->w();
const Scalar twy = ty*this->w();
const Scalar twz = tz*this->w();
const Scalar txx = tx*this->x();
const Scalar txy = ty*this->x();
const Scalar txz = tz*this->x();
const Scalar tyy = ty*this->y();
const Scalar tyz = tz*this->y();
const Scalar tzz = tz*this->z();
res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
res.coeffRef(0,1) = txy-twz;
res.coeffRef(0,2) = txz+twy;
res.coeffRef(1,0) = txy+twz;
res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
res.coeffRef(1,2) = tyz-twx;
res.coeffRef(2,0) = txz-twy;
res.coeffRef(2,1) = tyz+twx;
res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
return res;
}
/** Sets \c *this to be a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns a reference to \c *this.
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template<class Derived>
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
EIGEN_USING_STD(sqrt)
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v1.dot(v0);
// if dot == -1, vectors are nearly opposites
// => accurately compute the rotation axis by computing the
// intersection of the two planes. This is done by solving:
// x^T v0 = 0
// x^T v1 = 0
// under the constraint:
// ||x|| = 1
// which yields a singular value problem
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
{
c = numext::maxi(c,Scalar(-1));
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
Vector3 axis = svd.matrixV().col(2);
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
this->w() = sqrt(w2);
this->vec() = axis * sqrt(Scalar(1) - w2);
return derived();
}
Vector3 axis = v0.cross(v1);
Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
Scalar invs = Scalar(1)/s;
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return derived();
}
/** \returns a random unit quaternion following a uniform distribution law on SO(3)
*
* \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
*/
template<typename Scalar, int Options>
EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
{
EIGEN_USING_STD(sqrt)
EIGEN_USING_STD(sin)
EIGEN_USING_STD(cos)
const Scalar u1 = internal::random<Scalar>(0, 1),
u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
const Scalar a = sqrt(Scalar(1) - u1),
b = sqrt(u1);
return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
}
/** Returns a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns resulting quaternion
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template<typename Scalar, int Options>
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Quaternion quat;
quat.setFromTwoVectors(a, b);
return quat;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
if (n2 > Scalar(0))
return Quaternion<Scalar>(conjugate().coeffs() / n2);
else
{
// return an invalid result to flag the error
return Quaternion<Scalar>(Coefficients::Zero());
}
}
// Generic conjugate of a Quaternion
namespace internal {
template<int Arch, class Derived, typename Scalar> struct quat_conj
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
}
};
}
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion2::inverse()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
return internal::quat_conj<Architecture::Target, Derived,
typename internal::traits<Derived>::Scalar>::run(*this);
}
/** \returns the angle (in radian) between two rotations
* \sa dot()
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
EIGEN_USING_STD(atan2)
Quaternion<Scalar> d = (*this) * other.conjugate();
return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t in [0;1].
*
* This represents an interpolation for a constant motion between \c *this and \a other,
* see also http://en.wikipedia.org/wiki/Slerp.
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
{
EIGEN_USING_STD(acos)
EIGEN_USING_STD(sin)
const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
Scalar d = this->dot(other);
Scalar absD = numext::abs(d);
Scalar scale0;
Scalar scale1;
if(absD>=one)
{
scale0 = Scalar(1) - t;
scale1 = t;
}
else
{
// theta is the angle between the 2 quaternions
Scalar theta = acos(absD);
Scalar sinTheta = sin(theta);
scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
scale1 = sin( ( t * theta) ) / sinTheta;
}
if(d<Scalar(0)) scale1 = -scale1;
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}
namespace internal {
// set from a rotation matrix
template<typename Other>
struct quaternionbase_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
{
const typename internal::nested_eval<Other,2>::type mat(a_mat);
EIGEN_USING_STD(sqrt)
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > Scalar(0))
{
t = sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5)*t;
t = Scalar(0.5)/t;
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
}
else
{
Index i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
Index j = (i+1)%3;
Index k = (j+1)%3;
t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
t = Scalar(0.5)/t;
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
}
}
};
// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct quaternionbase_assign_impl<Other,4,1>
{
typedef typename Other::Scalar Scalar;
template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
{
q.coeffs() = vec;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_QUATERNION_H
Event Timeline
Log In to Comment