Page MenuHomec4science

test_material_damage_iterative.cc
No OneTemporary

File Metadata

Created
Sat, Jul 13, 11:38

test_material_damage_iterative.cc

/**
* @file test_material_damage_iterative.cc
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @date Thu Nov 26 12:20:15 2015
*
* @brief test the material damage iterative
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "material_damage_iterative.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
/* Main */
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
Math::setTolerance(1e-13);
debug::setDebugLevel(dblWarning);
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 2;
ElementType element_type = _triangle_3;
const auto & comm = Communicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
/// read the mesh and partion it
Mesh mesh(spatial_dimension);
if (prank == 0) {
mesh.read("plate.msh");
}
mesh.distribute();
/// model creation
SolidMechanicsModel model(mesh);
/// initialization of the model
model.initFull(_analysis_method = _static);
/// boundary conditions
/// Dirichlet BC
mesh.createGroupsFromMeshData<std::string>(
"physical_names"); // creates groups from mesh names
model.applyBC(BC::Dirichlet::FixedValue(0, _x), "left");
model.applyBC(BC::Dirichlet::FixedValue(0, _y), "bottom");
model.applyBC(BC::Dirichlet::FixedValue(2., _y), "top");
/// add fields that should be dumped
model.setBaseName("material_damage_iterative_test");
model.addDumpFieldVector("displacement");
;
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("residual");
model.addDumpField("grad_u");
model.addDumpField("damage");
model.addDumpField("partitions");
model.addDumpField("material_index");
model.addDumpField("Sc");
model.addDumpField("force");
model.addDumpField("equivalent_stress");
model.dump();
MaterialDamageIterative<spatial_dimension> & material =
dynamic_cast<MaterialDamageIterative<spatial_dimension> &>(
model.getMaterial(0));
UInt nb_damaged_elements = 0;
Real max_eq_stress = 0;
/// solve the system
model.solveStep();
model.dump();
/// check that the normalized equivalent stress
Array<Real> & eq_stress =
material.getInternal<Real>("equivalent_stress")(element_type, _not_ghost);
Array<Real>::const_scalar_iterator eq_stress_it = eq_stress.begin();
UInt nb_elements = mesh.getNbElement(element_type, _not_ghost);
for (UInt e = 0; e < nb_elements; ++e, ++eq_stress_it) {
if (!Math::are_float_equal(*eq_stress_it, 0.1)) {
std::cout << "Error in the equivalent normalized stress" << std::endl;
finalize();
return EXIT_FAILURE;
}
}
/// get the maximum equivalent stress
max_eq_stress = material.getNormMaxEquivalentStress();
nb_damaged_elements = 0;
if (max_eq_stress > 1.)
nb_damaged_elements = material.updateDamage();
if (nb_damaged_elements) {
std::cout << "Damage occured even though the normalized stress is below 1"
<< std::endl;
finalize();
return EXIT_FAILURE;
}
/// weaken material locally to cause damage
Array<Real> & strength = const_cast<Array<Real> &>(
material.getInternal<Real>("Sc")(element_type, _not_ghost));
Array<Real>::scalar_iterator strength_it = strength.begin();
++strength_it;
*strength_it = 0.9;
strength_it += 4;
*strength_it = 0.898;
/// solve the system again
model.solveStep();
/// get the maximum equivalent stress
max_eq_stress = material.getNormMaxEquivalentStress();
nb_damaged_elements = 0;
if (max_eq_stress > 1.)
nb_damaged_elements = material.updateDamage();
UInt nb_damaged_elements_per_proc = 2;
if (nb_damaged_elements != psize * nb_damaged_elements_per_proc) {
std::cout << "Error in number of damaged elements" << std::endl;
finalize();
return EXIT_FAILURE;
}
/// check that damage occured in correct elements
Real dam_diff = 0.;
Array<Real> & damage =
material.getInternal<Real>("damage")(element_type, _not_ghost);
Array<Real>::const_scalar_iterator damage_it = damage.begin();
for (UInt e = 0; e < nb_elements; ++e, ++damage_it) {
if (e == 1 || e == 5)
dam_diff += std::abs(0.1 - *damage_it);
else
dam_diff += (*damage_it);
}
if (dam_diff > 1.e-13) {
std::cout << "Error in damage pattern" << std::endl;
finalize();
return EXIT_FAILURE;
}
/// solve to compute the stresses correctly for dumping
model.solveStep();
model.dump();
finalize();
return EXIT_SUCCESS;
}

Event Timeline