Page MenuHomec4science

neighbor.cu
No OneTemporary

File Metadata

Created
Tue, Jul 16, 08:10

neighbor.cu

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#include <time.h>
#define MY_PREFIX neighbor
#define IncludeCommonNeigh
#include "cuda_shared.h"
#include "cuda_common.h"
#include "crm_cuda_utils.cu"
#include "cuda_wrapper_cu.h"
#define _cutneighsq MY_AP(cutneighsq)
#define _ex_type MY_AP(ex_type)
#define _nex_type MY_AP(nex_type)
#define _ex1_bit MY_AP(ex1_bit)
#define _ex2_bit MY_AP(ex2_bit)
#define _nex_group MY_AP(nex_group)
#define _ex_mol_bit MY_AP(ex_mol_bit)
#define _nex_mol MY_AP(nex_mol)
__device__ __constant__ CUDA_FLOAT* _cutneighsq;
__device__ __constant__ int* _ex_type;
__device__ __constant__ int _nex_type;
__device__ __constant__ int* _ex1_bit;
__device__ __constant__ int* _ex2_bit;
__device__ __constant__ int _nex_group;
__device__ __constant__ int* _ex_mol_bit;
__device__ __constant__ int _nex_mol;
#include "neighbor_cu.h"
#include "neighbor_kernel.cu"
void Cuda_Neighbor_UpdateBuffer(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
CUT_CHECK_ERROR("Cuda_PairLJCutCuda: before updateBuffer failed");
int size = (unsigned)(sizeof(int) * 20 + sneighlist->bin_dim[0] * sneighlist->bin_dim[1] * sneighlist->bin_dim[2] * (sizeof(int) + sneighlist->bin_nmax * 3 * sizeof(CUDA_FLOAT)));
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_Neighbor Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
if(sdata->buffer != NULL) CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*));
CUT_CHECK_ERROR("Cuda_PairLJCutCuda: updateBuffer failed");
}
int Cuda_BinAtoms(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
if(sdata->buffer_new)
Cuda_Neighbor_UpdateBuffer(sdata, sneighlist);
// initialize only on first call
CUDA_FLOAT rez_bin_size[3] = {
(1.0 * sneighlist->bin_dim[0] - 4.0) / (sdata->domain.subhi[0] - sdata->domain.sublo[0]),
(1.0 * sneighlist->bin_dim[1] - 4.0) / (sdata->domain.subhi[1] - sdata->domain.sublo[1]),
(1.0 * sneighlist->bin_dim[2] - 4.0) / (sdata->domain.subhi[2] - sdata->domain.sublo[2])
};
short init = 0;
if(! init) {
init = 0;
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(sublo) , sdata->domain.sublo , sizeof(X_FLOAT) * 3);
}
int3 layout = getgrid(sdata->atom.nall); // sneighlist->inum
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
timespec starttime, endtime;
clock_gettime(CLOCK_REALTIME, &starttime);
cudaMemset((int*)(sdata->buffer), 0, sizeof(int) * (20 + (sneighlist->bin_dim[0]) * (sneighlist->bin_dim[1]) * (sneighlist->bin_dim[2])) + 3 * sizeof(CUDA_FLOAT) * (sneighlist->bin_dim[0]) * (sneighlist->bin_dim[1]) * (sneighlist->bin_dim[2]) * (sneighlist->bin_nmax));
Binning_Kernel <<< grid, threads>>> (sneighlist->binned_id, sneighlist->bin_nmax, sneighlist->bin_dim[0], sneighlist->bin_dim[1], sneighlist->bin_dim[2], rez_bin_size[0], rez_bin_size[1], rez_bin_size[2]);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &endtime);
sdata->cuda_timings.neigh_bin +=
endtime.tv_sec - starttime.tv_sec + 1.0 * (endtime.tv_nsec - starttime.tv_nsec) / 1000000000;
int binning_error;
cudaMemcpy((void*) &binning_error, (void*) sdata->buffer, 1 * sizeof(int), cudaMemcpyDeviceToHost);
if(binning_error) {
sneighlist->bin_extraspace += 0.05;
} else {
MYDBG(printf("CUDA: binning successful\n");)
}
CUT_CHECK_ERROR("Cuda_Binning: binning Kernel execution failed");
return binning_error;
}
int Cuda_NeighborBuildFullBin(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
//Cuda_Neighbor_UpdateBuffer(sdata,sneighlist);
CUDA_FLOAT globcutoff = -1.0;
short init = 0;
if(! init) {
init = 1;
// !! LAMMPS indexes atom types starting with 1 !!
unsigned cuda_ntypes = sdata->atom.ntypes + 1;
unsigned nx = sizeof(CUDA_FLOAT) * cuda_ntypes * cuda_ntypes;
CUDA_FLOAT* acutneighsq = (CUDA_FLOAT*) malloc(nx);
//printf("Allocate: %i\n",nx);
sneighlist->cu_cutneighsq = (CUDA_FLOAT*) CudaWrapper_AllocCudaData(nx);
if(sneighlist->cutneighsq) {
int cutoffsdiffer = 0;
double cutoff0 = sneighlist->cutneighsq[1][1];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
acutneighsq[i * cuda_ntypes + j] = (CUDA_FLOAT)(sneighlist->cutneighsq[i][j]);
if((sneighlist->cutneighsq[i][j] - cutoff0) * (sneighlist->cutneighsq[i][j] - cutoff0) > 1e-6) cutoffsdiffer++;
}
}
if(not cutoffsdiffer) globcutoff = (CUDA_FLOAT) cutoff0;
} else {
MYEMUDBG(printf("# CUDA: Cuda_NeighborBuild: cutneighsq == NULL\n");)
return 0;
}
int size = 100;
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_NeighborBuild Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
CudaWrapper_UploadCudaData(acutneighsq, sneighlist->cu_cutneighsq, nx);
cudaMemcpyToSymbol(MY_AP(cutneighsq) , &sneighlist->cu_cutneighsq , sizeof(CUDA_FLOAT*));
cudaMemcpyToSymbol(MY_AP(cuda_ntypes) , & cuda_ntypes , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(special_flag) , sdata->atom.special_flag , 4 * sizeof(int));
cudaMemcpyToSymbol(MY_AP(molecular) , & sdata->atom.molecular , sizeof(int));
}
cudaMemcpyToSymbol(MY_AP(neighbor_maxlocal), & sneighlist->firstneigh.dim[0] , sizeof(unsigned));
//cudaMemcpyToSymbol(MY_AP(firstneigh) , & sneighlist->firstneigh.dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_AP(ilist) , & sneighlist->ilist .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(inum) , & sneighlist->inum , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
cudaMemcpyToSymbol(MY_AP(numneigh) , & sneighlist->numneigh .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(special) , & sdata->atom.special .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(maxspecial) , & sdata->atom.maxspecial , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nspecial) , & sdata->atom.nspecial .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(maxneighbors) , & sneighlist->maxneighbors , sizeof(int));
cudaMemcpyToSymbol(MY_AP(debugdata) , & sdata->debugdata , sizeof(int*));
cudaMemcpyToSymbol(MY_AP(overlap_comm) , & sdata->overlap_comm, sizeof(int));
cudaMemcpyToSymbol(MY_AP(neighbors) , & sneighlist->neighbors.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ex_type) , & sneighlist->ex_type.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ex1_bit) , & sneighlist->ex1_bit.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ex2_bit) , & sneighlist->ex2_bit.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ex_mol_bit) , & sneighlist->ex_mol_bit.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(nex_type) , & sneighlist->nex_type, sizeof(int));
cudaMemcpyToSymbol(MY_AP(nex_group) , & sneighlist->nex_group, sizeof(int));
cudaMemcpyToSymbol(MY_AP(nex_mol) , & sneighlist->nex_mol, sizeof(int));
if(sdata->overlap_comm) {
cudaMemcpyToSymbol(MY_AP(numneigh_border) , & sneighlist->numneigh_border .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(numneigh_inner) , & sneighlist->numneigh_inner .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(neighbors_border) , & sneighlist->neighbors_border.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(neighbors_inner) , & sneighlist->neighbors_inner .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ilist_border) , & sneighlist->ilist_border .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(inum_border) , & sneighlist->inum_border .dev_data, sizeof(int*));
}
//dim3 threads(sneighlist->bin_nmax,1,1);
dim3 threads(MIN(128, sneighlist->bin_nmax), 1, 1);
dim3 grid(sneighlist->bin_dim[0]*sneighlist->bin_dim[1], sneighlist->bin_dim[2], 1);
//printf("Configuration: %i %i %i %i %i\n",grid.x,grid.y,threads.x,(sizeof(int)+3*sizeof(X_FLOAT))*threads.x,sneighlist->bin_nmax);
int buffer[20];
buffer[0] = 1;
buffer[1] = 0;
CudaWrapper_UploadCudaData(buffer, sdata->buffer, 2 * sizeof(int));
CUT_CHECK_ERROR("Cuda_NeighborBuild: pre neighbor build kernel error");
//cudaMemset(sdata->debugdata,0,100*sizeof(int));
unsigned int shared_size = (sizeof(int) + 3 * sizeof(CUDA_FLOAT)) * threads.x;
MYDBG(printf("Configuration: %i %i %i %u %i\n", grid.x, grid.y, threads.x, shared_size, sneighlist->bin_nmax);)
//shared_size=2056;
timespec starttime, endtime;
clock_gettime(CLOCK_REALTIME, &starttime);
//for(int i=0;i<100;i++)
{
if(sdata->overlap_comm)
NeighborBuildFullBin_OverlapComm_Kernel <<< grid, threads, shared_size>>>
(sneighlist->binned_id, sneighlist->bin_nmax, sneighlist->bin_dim[0], sneighlist->bin_dim[1], globcutoff, sdata->pair.use_block_per_atom);
else {
int exclude = sneighlist->nex_mol | sneighlist->nex_group | sneighlist->nex_type;
if(exclude)
NeighborBuildFullBin_Kernel<1> <<< grid, threads, shared_size>>>
(sneighlist->binned_id, sneighlist->bin_nmax, sneighlist->bin_dim[0], sneighlist->bin_dim[1], globcutoff, sdata->pair.use_block_per_atom, sdata->pair.neighall);
else
NeighborBuildFullBin_Kernel<0> <<< grid, threads, shared_size>>>
(sneighlist->binned_id, sneighlist->bin_nmax, sneighlist->bin_dim[0], sneighlist->bin_dim[1], globcutoff, sdata->pair.use_block_per_atom, sdata->pair.neighall);
}
//NeighborBuildFullBin_Kernel_Restrict<<<grid,threads,(2*sizeof(int)+3*sizeof(X_FLOAT))*threads.x+sizeof(int)>>>
// (sneighlist->binned_id,sneighlist->bin_nmax,sneighlist->bin_dim[0],sneighlist->bin_dim[1],globcutoff);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_NeighborBuild: neighbor build kernel execution failed");
clock_gettime(CLOCK_REALTIME, &endtime);
sdata->cuda_timings.neigh_build +=
endtime.tv_sec - starttime.tv_sec + 1.0 * (endtime.tv_nsec - starttime.tv_nsec) / 1000000000;
//dim3 threads,grid;
CudaWrapper_DownloadCudaData(buffer, sdata->buffer, sizeof(int));
if(buffer[0] >= 0 && true && sdata->atom.molecular) {
//printf("Find Special: %i %i\n",sneighlist->inum,sdata->atom.nall);
clock_gettime(CLOCK_REALTIME, &starttime);
int3 layout = getgrid(sdata->atom.nlocal, 0, 512);
threads.x = layout.z;
threads.y = 1;
threads.z = 1;
grid.x = layout.x;
grid.y = layout.y;
grid.z = 1;
FindSpecial <<< grid, threads>>>(sdata->pair.use_block_per_atom);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_NeighborBuild: FindSpecial kernel execution failed");
clock_gettime(CLOCK_REALTIME, &endtime);
sdata->cuda_timings.neigh_special +=
endtime.tv_sec - starttime.tv_sec + 1.0 * (endtime.tv_nsec - starttime.tv_nsec) / 1000000000;
}
}
//printf("Neightime: %lf\n",sdata->cuda_timings.test1);
CUT_CHECK_ERROR("Cuda_NeighborBuild: neighbor build kernel execution failed");
//CudaWrapper_DownloadCudaData(buffer, sneighlist->numneigh_border .dev_data, sizeof(int));
MYDBG(printf("Cuda_NeighborBuildFullBin build neighbor list ... end\n");)
return buffer[0];
}
int Cuda_NeighborBuildFullNsq(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
MYDBG(printf("Cuda_NeighborBuildFullNsq build neighbor list ... start\n");)
// initialize only on first call
/*static*/ short init = 0;
if(! init) {
init = 1;
// !! LAMMPS indexes atom types starting with 1 !!
unsigned cuda_ntypes = sdata->atom.ntypes + 1;
if(cuda_ntypes * cuda_ntypes > CUDA_MAX_TYPES2)
printf("# CUDA: Cuda_PairLJCutCuda_Init: you need %u types. this is more than %u "
"(assumed at compile time). re-compile with -DCUDA_MAX_TYPES_PLUS_ONE=32 "
"or ajust this in cuda_common.h\n", cuda_ntypes, CUDA_MAX_TYPES2);
unsigned nx = sizeof(CUDA_FLOAT) * cuda_ntypes * cuda_ntypes;
CUDA_FLOAT* acutneighsq = (CUDA_FLOAT*) malloc(nx);
if(sneighlist->cutneighsq) {
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
acutneighsq[i * cuda_ntypes + j] = (CUDA_FLOAT)(sneighlist->cutneighsq[i][j]);
//printf("CUTOFFS: %i %i %i %e\n",i,j,cuda_ntypes,acutneighsq[i * cuda_ntypes + j]);
}
}
} else {
MYEMUDBG(printf("# CUDA: Cuda_NeighborBuild: cutneighsq == NULL\n");)
return 0;
}
int size = 100;
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_NeighborBuild Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer) , & sdata->buffer , sizeof(int*));
cudaMemcpyToSymbol(MY_AP(cuda_ntypes) , & cuda_ntypes , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(cutneighsq) , acutneighsq , nx);
cudaMemcpyToSymbol(MY_AP(neighbor_maxlocal), & sneighlist->firstneigh.dim[0] , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(firstneigh) , & sneighlist->firstneigh.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ilist) , & sneighlist->ilist .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(inum) , & sneighlist->inum , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
cudaMemcpyToSymbol(MY_AP(numneigh) , & sneighlist->numneigh .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(maxneighbors) , & sneighlist->maxneighbors , sizeof(int));
free(acutneighsq);
}
int3 layout = getgrid(sdata->atom.nlocal); // sneighlist->inum
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
int return_value = 1;
CudaWrapper_UploadCudaData(& return_value, sdata->buffer, sizeof(int));
CUT_CHECK_ERROR("Cuda_NeighborBuild: pre neighbor build kernel execution failed");
NeighborBuildFullNsq_Kernel <<< grid, threads>>> ();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_NeighborBuild: neighbor build kernel execution failed");
int buffer[20];
CudaWrapper_DownloadCudaData(buffer, sdata->buffer, sizeof(int) * 20);
MYDBG(printf("Cuda_NeighborBuildFullNSQ build neighbor list ... end\n");)
return return_value = buffer[0];
}

Event Timeline