Page MenuHomec4science

gl.py
No OneTemporary

File Metadata

Created
Tue, Aug 6, 08:19
# Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
# Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
#
# Copyright (2005) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the GNU General Public License.
# for python3 compatibility
from __future__ import print_function
# gl tool
oneline = "3d interactive visualization via OpenGL"
docstr = """
g = gl(d) create OpenGL display for data in d
d = atom snapshot object (dump, data)
g.bg("black") set background color (def = "black")
g.size(N) set image size to NxN
g.size(N,M) set image size to NxM
g.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
g.shift(x,y) translate by x,y pixels in view window (def = 0,0)
g.zoom(0.5) scale image by factor (def = 1)
g.box(0/1/2) 0/1/2 = none/variable/fixed box
g.box(0/1/2,"green") set box color
g.box(0/1/2,"red",4) set box edge thickness
g.file = "image" file prefix for created images (def = "image")
g.show(N) show image of snapshot at timestep N
g.all() make images of all selected snapshots
g.all(P) images of all, start file label at P
g.all(N,M,P) make M images of snapshot N, start label at P
g.pan(60,135,1.0,40,135,1.5) pan during all() operation
g.pan() no pan during all() (default)
args = z theta, azimuthal phi, zoom factor at beginning and end
values at each step are interpolated between beginning and end values
g.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
g.select = "" no extra aselect (default)
%g varies from 0.0 to 1.0 from beginning to end of all()
g.acol(2,"green") set atom colors by atom type (1-N)
g.acol([2,4],["red","blue"]) 1st arg = one type or list of types
g.acol(0,"blue") 2nd arg = one color or list of colors
g.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
g.acol(range(10),"loop") assign colors in loop, randomly ordered
if 1st arg is 0, set all types to 2nd arg
if list of types has a 0 (e.g. range(10)), +1 is added to each value
interpolate means colors blend smoothly from one value to the next
g.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()
g.bcol() set bond color, same args as acol()
g.brad() set bond thickness, same args as arad()
g.tcol() set triangle color, same args as acol()
g.tfill() set triangle fill, 0 fill, 1 line, 2 both
g.lcol() set line color, same args as acol()
g.lrad() set line thickness, same args as arad()
g.adef() set atom/bond/tri/line properties to default
g.bdef() default = "loop" for colors, 0.45 for radii
g.tdef() default = 0.25 for bond/line thickness
g.ldef() default = 0 fill
by default 100 types are assigned
if atom/bond/tri/line has type > # defined properties, is an error
from vizinfo import colors access color list
print(colors) list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255
140 pre-defined colors: red, green, blue, purple, yellow, black, white, etc
Settings specific to gl tool:
g.q(10) set quality of image (def = 5)
g.axis(0/1) turn xyz axes off/on
g.ortho(0/1) perspective (0) vs orthographic (1) view
g.clip('xlo',0.25) clip in xyz from lo/hi at box fraction (0-1)
g.reload() force all data to be reloaded
g.cache = 0/1 turn off/on GL cache lists (def = on)
theta,phi,x,y,scale,up = g.gview() grab all current view parameters
g.sview(theta,phi,x,y,scale,up) set all view parameters
data reload is necessary if dump selection is used to change the data
cache lists usually improve graphics performance
gview returns values to use in other commands:
theta,phi are args to rotate()
x,y are args to shift()
scale is arg to zoom()
up is a 3-vector arg to sview()
"""
# History
# 9/05, Steve Plimpton (SNL): original version
# ToDo list
# when do aselect with select str while looping N times on same timestep
# would not let you grow # of atoms selected
# Variables
# ztheta = vertical angle from z-azis of viewpoint
# azphi = azimuthal angle of viewpoint
# xshift,yshift = xy translation of scene (in pixels)
# distance = size of simulation box (largest dim)
# eye = viewpoint distance from center of scene
# file = filename prefix to use for images produced
# boxflag = 0/1/2 for drawing simulation box: none/variable/fixed
# bxcol = color of box
# bxthick = thickness of box lines
# bgcol = color of background
# vizinfo = scene attributes
# center[3] = center point of simulation box
# view[3] = direction towards eye in simulation box (unit vector)
# up[3] = screen up direction in simulation box (unit vector)
# right[3] = screen right direction in simulation box (unit vector)
# Imports and external programs
from math import sin,cos,sqrt,pi,acos
from OpenGL.Tk import *
from OpenGL.GLUT import *
import Image
from vizinfo import vizinfo
# Class definition
class gl:
# --------------------------------------------------------------------
def __init__(self,data):
self.data = data
self.root = None
self.xpixels = 512
self.ypixels = 512
self.ztheta = 60
self.azphi = 30
self.scale = 1.0
self.xshift = self.yshift = 0
self.file = "image"
self.boxflag = 0
self.bxcol = [1,1,0]
self.bxthick = 0.3
self.bgcol = [0,0,0]
self.labels = []
self.panflag = 0
self.select = ""
self.axisflag = 0
self.orthoflag = 1
self.nslices = 5
self.nstacks = 5
self.nsides = 10
self.theta_amplify = 2
self.shiny = 2
self.clipflag = 0
self.clipxlo = self.clipylo = self.clipzlo = 0.0
self.clipxhi = self.clipyhi = self.clipzhi = 1.0
self.nclist = 0
self.calllist = [0] # indexed by 1-Ntype, so start with 0 index
self.cache = 1
self.cachelist = 0
self.boxdraw = []
self.atomdraw = []
self.bonddraw = []
self.tridraw = []
self.linedraw = []
self.ready = 0
self.create_window()
self.vizinfo = vizinfo()
self.adef()
self.bdef()
self.tdef()
self.ldef()
self.center = 3*[0]
self.view = 3*[0]
self.up = 3*[0]
self.right = 3*[0]
self.viewupright()
# --------------------------------------------------------------------
def bg(self,color):
from vizinfo import colors
self.bgcol = [colors[color][0]/255.0,colors[color][1]/255.0,
colors[color][2]/255.0]
self.w.tkRedraw()
# --------------------------------------------------------------------
def size(self,xnew,ynew=None):
self.xpixels = xnew
if not ynew: self.ypixels = self.xpixels
else: self.ypixels = ynew
self.create_window()
# --------------------------------------------------------------------
def axis(self,value):
self.axisflag = value
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def create_window(self):
if self.root: self.root.destroy()
from __main__ import tkroot
self.root = Toplevel(tkroot)
self.root.title('Pizza.py gl tool')
self.w = MyOpengl(self.root,width=self.xpixels,height=self.ypixels,
double=1,depth=1)
self.w.pack(expand=YES)
# self.w.pack(expand=YES,fill=BOTH)
glViewport(0,0,self.xpixels,self.ypixels)
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
self.rtrack = self.xpixels
if self.ypixels > self.xpixels: self.rtrack = self.ypixels
self.w.redraw = self.redraw
self.w.parent = self
self.w.tkRedraw()
tkroot.update_idletasks() # force window to appear
# --------------------------------------------------------------------
def clip(self,which,value):
if which == "xlo":
self.clipxlo = value
if value > self.clipxhi: self.clipxlo = self.clipxhi
elif which == "xhi":
self.clipxhi = value
if value < self.clipxlo: self.clipxhi = self.clipxlo
elif which == "ylo":
self.clipylo = value
if value > self.clipyhi: self.clipylo = self.clipyhi
elif which == "yhi":
self.clipyhi = value
if value < self.clipylo: self.clipyhi = self.clipylo
elif which == "zlo":
self.clipzlo = value
if value > self.clipzhi: self.clipzlo = self.clipzhi
elif which == "zhi":
self.clipzhi = value
if value < self.clipzlo: self.clipzhi = self.clipzlo
oldflag = self.clipflag
if self.clipxlo > 0 or self.clipylo > 0 or self.clipzlo > 0 or \
self.clipxhi < 1 or self.clipyhi < 1 or self.clipzhi < 1:
self.clipflag = 1
else: self.clipflag = 0
if oldflag == 0 and self.clipflag == 0: return
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def q(self,value):
self.nslices = value
self.nstacks = value
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def ortho(self,value):
self.orthoflag = value
self.w.tkRedraw()
# --------------------------------------------------------------------
# set unit vectors for view,up,right from ztheta,azphi
# assume +z in scene should be up on screen (unless looking down z-axis)
# right = up x view
def viewupright(self):
self.view[0] = cos(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[1] = sin(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[2] = cos(pi*self.ztheta/180)
if self.ztheta == 0.0:
self.up[0] = cos(pi*self.azphi/180)
self.up[1] = -sin(pi*self.azphi/180)
self.up[2] = 0.0
elif self.ztheta == 180.0:
self.up[0] = cos(pi*self.azphi/180)
self.up[1] = sin(pi*self.azphi/180)
self.up[2] = 0.0
else:
dot = self.view[2] # dot = (0,0,1) . view
self.up[0] = -dot*self.view[0] # up projected onto v = dot * v
self.up[1] = -dot*self.view[1] # up perp to v = up - dot * v
self.up[2] = 1.0 - dot*self.view[2]
self.up = vecnorm(self.up)
self.right = veccross(self.up,self.view)
# --------------------------------------------------------------------
# reset ztheta,azphi and thus view,up.right
# called as function from Pizza.py
def rotate(self,ztheta,azphi):
self.ztheta = ztheta
self.azphi = azphi
self.viewupright()
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# return all view params to reproduce current display via sview()
def gview(self):
return self.ztheta,self.azphi,self.xshift,self.yshift,self.scale,self.up
# --------------------------------------------------------------------
# set current view, called by user with full set of view params
# up is not settable via any other call, all other params are
def sview(self,ztheta,azphi,xshift,yshift,scale,up):
self.ztheta = ztheta
self.azphi = azphi
self.xshift = xshift
self.yshift = yshift
self.scale = scale
self.up[0] = up[0]
self.up[1] = up[1]
self.up[2] = up[2]
self.up = vecnorm(self.up)
self.view[0] = cos(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[1] = sin(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[2] = cos(pi*self.ztheta/180)
self.right = veccross(self.up,self.view)
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# rotation triggered by mouse trackball
# project old,new onto unit trackball surf
# rotate view,up around axis of rotation = old x new
# right = up x view
# reset ztheta,azphi from view
def mouse_rotate(self,xnew,ynew,xold,yold):
# change y pixels to measure from bottom of window instead of top
yold = self.ypixels - yold
ynew = self.ypixels - ynew
# vold = unit vector to (xold,yold) projected onto trackball
# vnew = unit vector to (xnew,ynew) projected onto trackball
# return (no rotation) if either projection point is outside rtrack
vold = [0,0,0]
vold[0] = xold - (0.5*self.xpixels + self.xshift)
vold[1] = yold - (0.5*self.ypixels + self.yshift)
vold[2] = self.rtrack*self.rtrack - vold[0]*vold[0] - vold[1]*vold[1]
if vold[2] < 0: return
vold[2] = sqrt(vold[2])
vold = vecnorm(vold)
vnew = [0,0,0]
vnew[0] = xnew - (0.5*self.xpixels + self.xshift)
vnew[1] = ynew - (0.5*self.ypixels + self.yshift)
vnew[2] = self.rtrack*self.rtrack - vnew[0]*vnew[0] - vnew[1]*vnew[1]
if vnew[2] < 0: return
vnew[2] = sqrt(vnew[2])
vnew = vecnorm(vnew)
# rot = trackball rotation axis in screen ref frame = vold x vnew
# theta = angle of rotation = sin(theta) for small theta
# axis = rotation axis in body ref frame described by right,up,view
rot = veccross(vold,vnew)
theta = sqrt(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2])
theta *= self.theta_amplify
axis = [0,0,0]
axis[0] = rot[0]*self.right[0] + rot[1]*self.up[0] + rot[2]*self.view[0]
axis[1] = rot[0]*self.right[1] + rot[1]*self.up[1] + rot[2]*self.view[1]
axis[2] = rot[0]*self.right[2] + rot[1]*self.up[2] + rot[2]*self.view[2]
axis = vecnorm(axis)
# view is changed by (axis x view) scaled by theta
# up is changed by (axis x up) scaled by theta
# force up to be perp to view via up_perp = up - (up . view) view
# right = up x view
delta = veccross(axis,self.view)
self.view[0] -= theta*delta[0]
self.view[1] -= theta*delta[1]
self.view[2] -= theta*delta[2]
self.view = vecnorm(self.view)
delta = veccross(axis,self.up)
self.up[0] -= theta*delta[0]
self.up[1] -= theta*delta[1]
self.up[2] -= theta*delta[2]
dot = vecdot(self.up,self.view)
self.up[0] -= dot*self.view[0]
self.up[1] -= dot*self.view[1]
self.up[2] -= dot*self.view[2]
self.up = vecnorm(self.up)
self.right = veccross(self.up,self.view)
# convert new view to ztheta,azphi
self.ztheta = acos(self.view[2])/pi * 180.0
if (self.ztheta == 0.0): self.azphi = 0.0
else: self.azphi = acos(self.view[0]/sin(pi*self.ztheta/180.0))/pi * 180.0
if self.view[1] < 0: self.azphi = 360.0 - self.azphi
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
def shift(self,x,y):
self.xshift = x;
self.yshift = y;
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
def zoom(self,scale):
self.scale = scale
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# set view params needed by redraw
# input: center = center of box
# distance = size of scene (longest box length)
# scale = zoom factor (1.0 = no zoom)
# xshift,yshift = translation factor in pixels
# view = unit vector from center to viewpoint
# up = unit vector in up direction in scene
# right = unit vector in right direction in scene
# output: eye = distance to view scene from
# xto,yto,zto = point to look to
# xfrom,yfrom,zfrom = point to look from
def setview(self):
if not self.ready: return # no distance since no scene yet
self.eye = 3 * self.distance / self.scale
xfactor = 0.5*self.eye*self.xshift/self.xpixels
yfactor = 0.5*self.eye*self.yshift/self.ypixels
self.xto = self.center[0] - xfactor*self.right[0] - yfactor*self.up[0]
self.yto = self.center[1] - xfactor*self.right[1] - yfactor*self.up[1]
self.zto = self.center[2] - xfactor*self.right[2] - yfactor*self.up[2]
self.xfrom = self.xto + self.eye*self.view[0]
self.yfrom = self.yto + self.eye*self.view[1]
self.zfrom = self.zto + self.eye*self.view[2]
# --------------------------------------------------------------------
# box attributes, also used for triangle lines
def box(self,*args):
self.boxflag = args[0]
if len(args) > 1:
from vizinfo import colors
self.bxcol = [colors[args[1]][0]/255.0,colors[args[1]][1]/255.0,
colors[args[1]][2]/255.0]
if len(args) > 2: self.bxthick = args[2]
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
# grab all selected snapshots from data object
# add GL-specific info to each bond
def reload(self):
print("Loading data into gl tool ...")
data = self.data
self.timeframes = []
self.boxframes = []
self.atomframes = []
self.bondframes = []
self.triframes = []
self.lineframes = []
box = []
if self.boxflag == 2: box = data.maxbox()
flag = 0
while 1:
which,time,flag = data.iterator(flag)
if flag == -1: break
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if bonds: self.bonds_augment(bonds)
self.timeframes.append(time)
self.boxframes.append(box)
self.atomframes.append(atoms)
self.bondframes.append(bonds)
self.triframes.append(tris)
self.lineframes.append(lines)
print(time,end='')
sys.stdout.flush()
print()
self.nframes = len(self.timeframes)
self.distance = compute_distance(self.boxframes[0])
self.center = compute_center(self.boxframes[0])
self.ready = 1
self.setview()
# --------------------------------------------------------------------
def nolabel(self):
self.cachelist = -self.cachelist
self.labels = []
# --------------------------------------------------------------------
# show a single snapshot
# distance from snapshot box or max box for all selected steps
def show(self,ntime):
data = self.data
which = data.findtime(ntime)
time,box,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag == 2: box = data.maxbox()
self.distance = compute_distance(box)
self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save()
# --------------------------------------------------------------------
def pan(self,*list):
if len(list) == 0: self.panflag = 0
else:
self.panflag = 1
self.ztheta_start = list[0]
self.azphi_start = list[1]
self.scale_start = list[2]
self.ztheta_stop = list[3]
self.azphi_stop = list[4]
self.scale_stop = list[5]
# --------------------------------------------------------------------
def all(self,*list):
data = self.data
if len(list) == 0:
nstart = 0
ncount = data.nselect
elif len(list) == 1:
nstart = list[0]
ncount = data.nselect
else:
ntime = list[0]
nstart = list[2]
ncount = list[1]
if self.boxflag == 2: box = data.maxbox()
# loop over all selected steps
# distance from 1st snapshot box or max box for all selected steps
# recompute box center on 1st step or if panning
if len(list) <= 1:
n = nstart
i = flag = 0
while 1:
which,time,flag = data.iterator(flag)
if flag == -1: break
fraction = float(i) / (ncount-1)
if self.select != "":
newstr = self.select % fraction
data.aselect.test(newstr,time)
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if n == nstart: self.distance = compute_distance(box)
if n < 10: file = self.file + "000" + str(n)
elif n < 100: file = self.file + "00" + str(n)
elif n < 1000: file = self.file + "0" + str(n)
else: file = self.file + str(n)
if self.panflag:
self.ztheta = self.ztheta_start + \
fraction*(self.ztheta_stop - self.ztheta_start)
self.azphi = self.azphi_start + \
fraction*(self.azphi_stop - self.azphi_start)
self.scale = self.scale_start + \
fraction*(self.scale_stop - self.scale_start)
self.viewupright()
if n == nstart or self.panflag: self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save(file)
print(time,end='')
sys.stdout.flush()
i += 1
n += 1
# loop ncount times on same step
# distance from 1st snapshot box or max box for all selected steps
# recompute box center on 1st step or if panning
else:
which = data.findtime(ntime)
n = nstart
for i in range(ncount):
fraction = float(i) / (ncount-1)
if self.select != "":
newstr = self.select % fraction
data.aselect.test(newstr,ntime)
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if n == nstart: self.distance = compute_distance(box)
if n < 10: file = self.file + "000" + str(n)
elif n < 100: file = self.file + "00" + str(n)
elif n < 1000: file = self.file + "0" + str(n)
else: file = self.file + str(n)
if self.panflag:
self.ztheta = self.ztheta_start + \
fraction*(self.ztheta_stop - self.ztheta_start)
self.azphi = self.azphi_start + \
fraction*(self.azphi_stop - self.azphi_start)
self.scale = self.scale_start + \
fraction*(self.scale_stop - self.scale_start)
self.viewupright()
if n == nstart or self.panflag: self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save(file)
print(n,end='')
sys.stdout.flush()
n += 1
print("\n%d images" % ncount)
# --------------------------------------------------------------------
def display(self,index):
self.boxdraw = self.boxframes[index]
self.atomdraw = self.atomframes[index]
self.bonddraw = self.bondframes[index]
self.tridraw = self.triframes[index]
self.linedraw = self.lineframes[index]
self.ready = 1
self.cachelist = -self.cachelist
self.w.tkRedraw()
return (self.timeframes[index],len(self.atomdraw))
# --------------------------------------------------------------------
# draw the GL scene
def redraw(self,o):
# clear window to background color
glClearColor(self.bgcol[0],self.bgcol[1],self.bgcol[2],0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
# not ready if no scene yet
if not self.ready: return
# set view from eye, distance, 3 lookat vectors (from,to,up)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
if self.orthoflag:
glOrtho(-0.25*self.eye,0.25*self.eye,-0.25*self.eye,0.25*self.eye,
self.eye-2*self.distance,self.eye+2*self.distance)
else:
gluPerspective(30.0,1.0,0.01,10000.0)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
gluLookAt(self.xfrom,self.yfrom,self.zfrom,self.xto,self.yto,self.zto,
self.up[0],self.up[1],self.up[2])
# draw scene from display list if caching allowed and list hasn't changed
# else redraw and store as new display list if caching allowed
if self.cache and self.cachelist > 0: glCallList(self.cachelist);
else:
if self.cache:
if self.cachelist < 0: glDeleteLists(-self.cachelist,1)
self.cachelist = glGenLists(1)
glNewList(self.cachelist,GL_COMPILE_AND_EXECUTE)
# draw box, clip-box, xyz axes, lines
glDisable(GL_LIGHTING)
if self.boxflag:
self.draw_box(0)
if self.clipflag: self.draw_box(1)
if self.axisflag: self.draw_axes()
ncolor = self.vizinfo.nlcolor
for line in self.linedraw:
itype = int(line[1])
if itype > ncolor: raise StandardError("line type too big")
red,green,blue = self.vizinfo.lcolor[itype]
glColor3f(red,green,blue)
thick = self.vizinfo.lrad[itype]
glLineWidth(thick)
glBegin(GL_LINES)
glVertex3f(line[2],line[3],line[4])
glVertex3f(line[5],line[6],line[7])
glEnd()
glEnable(GL_LIGHTING)
# draw non-clipped scene = atoms, bonds, triangles
# draw atoms as collection of points
# cannot put PointSize inside glBegin
# so probably need to group atoms by type for best performance
# or just allow one radius
# need to scale radius appropriately with box size
# or could leave it at absolute value
# use POINT_SMOOTH to enable anti-aliasing and round points
# multiple timesteps via vcr::play() is still not fast
# caching makes it fast for single frame, but multiple frames is slow
# need to enable clipping
# if not self.clipflag:
# glDisable(GL_LIGHTING)
# glEnable(GL_POINT_SMOOTH)
# glPointSize(self.vizinfo.arad[int(self.atomdraw[0][1])])
# glBegin(GL_POINTS)
# for atom in self.atomdraw:
# red,green,blue = self.vizinfo.acolor[int(atom[1])]
# glColor(red,green,blue)
# glVertex3d(atom[2],atom[3],atom[4])
# glEnd()
# glEnable(GL_LIGHTING)
if not self.clipflag:
for atom in self.atomdraw:
glTranslatef(atom[2],atom[3],atom[4]);
glCallList(self.calllist[int(atom[1])]);
glTranslatef(-atom[2],-atom[3],-atom[4]);
if self.bonddraw:
bound = 0.25 * self.distance
ncolor = self.vizinfo.nbcolor
for bond in self.bonddraw:
if bond[10] > bound: continue
itype = int(bond[1])
if itype > ncolor: raise StandardError("bond type too big")
red,green,blue = self.vizinfo.bcolor[itype]
rad = self.vizinfo.brad[itype]
glPushMatrix()
glTranslatef(bond[2],bond[3],bond[4])
glRotatef(bond[11],bond[12],bond[13],0.0)
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
obj = gluNewQuadric()
gluCylinder(obj,rad,rad,bond[10],self.nsides,self.nsides)
glPopMatrix()
if self.tridraw:
fillflag = self.vizinfo.tfill[int(self.tridraw[0][1])]
if fillflag != 1:
if fillflag:
glEnable(GL_POLYGON_OFFSET_FILL)
glPolygonOffset(1.0,1.0)
glBegin(GL_TRIANGLES)
ncolor = self.vizinfo.ntcolor
for tri in self.tridraw:
itype = int(tri[1])
if itype > ncolor: raise StandardError("tri type too big")
red,green,blue = self.vizinfo.tcolor[itype]
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
glNormal3f(tri[11],tri[12],tri[13])
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
if fillflag: glDisable(GL_POLYGON_OFFSET_FILL)
if fillflag:
glDisable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE)
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_TRIANGLES)
for tri in self.tridraw:
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
glEnable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
# draw clipped scene = atoms, bonds, triangles
else:
box = self.boxdraw
xlo = box[0] + self.clipxlo*(box[3] - box[0])
xhi = box[0] + self.clipxhi*(box[3] - box[0])
ylo = box[1] + self.clipylo*(box[4] - box[1])
yhi = box[1] + self.clipyhi*(box[4] - box[1])
zlo = box[2] + self.clipzlo*(box[5] - box[2])
zhi = box[2] + self.clipzhi*(box[5] - box[2])
for atom in self.atomdraw:
x,y,z = atom[2],atom[3],atom[4]
if x >= xlo and x <= xhi and y >= ylo and y <= yhi and \
z >= zlo and z <= zhi:
glTranslatef(x,y,z);
glCallList(self.calllist[int(atom[1])]);
glTranslatef(-x,-y,-z);
if self.bonddraw:
bound = 0.25 * self.distance
ncolor = self.vizinfo.nbcolor
for bond in self.bonddraw:
xmin = min2(bond[2],bond[5])
xmax = max2(bond[2],bond[5])
ymin = min2(bond[3],bond[6])
ymax = max2(bond[3],bond[6])
zmin = min2(bond[4],bond[7])
zmax = max2(bond[4],bond[7])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and zmin >= zlo and zmax <= zhi:
if bond[10] > bound: continue
itype = int(bond[1])
if itype > ncolor: raise StandardError("bond type too big")
red,green,blue = self.vizinfo.bcolor[itype]
rad = self.vizinfo.brad[itype]
glPushMatrix()
glTranslatef(bond[2],bond[3],bond[4])
glRotatef(bond[11],bond[12],bond[13],0.0)
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
obj = gluNewQuadric()
gluCylinder(obj,rad,rad,bond[10],self.nsides,self.nsides)
glPopMatrix()
if self.tridraw:
fillflag = self.vizinfo.tfill[int(self.tridraw[0][1])]
if fillflag != 1:
if fillflag:
glEnable(GL_POLYGON_OFFSET_FILL)
glPolygonOffset(1.0,1.0)
glBegin(GL_TRIANGLES)
ncolor = self.vizinfo.ntcolor
for tri in self.tridraw:
xmin = min3(tri[2],tri[5],tri[8])
xmax = max3(tri[2],tri[5],tri[8])
ymin = min3(tri[3],tri[6],tri[9])
ymax = max3(tri[3],tri[6],tri[9])
zmin = min3(tri[4],tri[7],tri[10])
zmax = max3(tri[4],tri[7],tri[10])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and \
zmin >= zlo and zmax <= zhi:
itype = int(tri[1])
if itype > ncolor: raise StandardError("tri type too big")
red,green,blue = self.vizinfo.tcolor[itype]
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,
[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
glNormal3f(tri[11],tri[12],tri[13])
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
if fillflag: glDisable(GL_POLYGON_OFFSET_FILL)
if fillflag:
glDisable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE)
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_TRIANGLES)
for tri in self.tridraw:
xmin = min3(tri[2],tri[5],tri[8])
xmax = max3(tri[2],tri[5],tri[8])
ymin = min3(tri[3],tri[6],tri[9])
ymax = max3(tri[3],tri[6],tri[9])
zmin = min3(tri[4],tri[7],tri[10])
zmax = max3(tri[4],tri[7],tri[10])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and \
zmin >= zlo and zmax <= zhi:
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
glEnable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
if self.cache: glEndList()
glFlush()
# --------------------------------------------------------------------
# make new call list for each atom type
# called when atom color/rad/quality is changed
def make_atom_calllist(self):
# extend calllist array if necessary
if self.vizinfo.nacolor > self.nclist:
for i in range(self.vizinfo.nacolor-self.nclist): self.calllist.append(0)
self.nclist = self.vizinfo.nacolor
# create new calllist for each atom type
for itype in xrange(1,self.vizinfo.nacolor+1):
if self.calllist[itype]: glDeleteLists(self.calllist[itype],1)
ilist = glGenLists(1)
self.calllist[itype] = ilist
glNewList(ilist,GL_COMPILE)
red,green,blue = self.vizinfo.acolor[itype]
rad = self.vizinfo.arad[itype]
glColor3f(red,green,blue);
# glPointSize(10.0*rad)
# glBegin(GL_POINTS)
# glVertex3f(0.0,0.0,0.0)
# glEnd()
glMaterialfv(GL_FRONT,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT,GL_SHININESS,self.shiny);
glutSolidSphere(rad,self.nslices,self.nstacks)
glEndList()
# --------------------------------------------------------------------
# augment bond info returned by viz() with info needed for GL draw
# info = length, theta, -dy, dx for bond orientation
def bonds_augment(self,bonds):
for bond in bonds:
dx = bond[5] - bond[2]
dy = bond[6] - bond[3]
dz = bond[7] - bond[4]
length = sqrt(dx*dx + dy*dy + dz*dz)
dx /= length
dy /= length
dz /= length
theta = acos(dz)*180.0/pi
bond += [length,theta,-dy,dx]
# --------------------------------------------------------------------
def draw_box(self,flag):
xlo,ylo,zlo,xhi,yhi,zhi = self.boxdraw
if flag:
tmp = xlo + self.clipxlo*(xhi - xlo)
xhi = xlo + self.clipxhi*(xhi - xlo)
xlo = tmp
tmp = ylo + self.clipylo*(yhi - ylo)
yhi = ylo + self.clipyhi*(yhi - ylo)
ylo = tmp
tmp = zlo + self.clipzlo*(zhi - zlo)
zhi = zlo + self.clipzhi*(zhi - zlo)
zlo = tmp
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_LINE_LOOP)
glVertex3f(xlo,ylo,zlo)
glVertex3f(xhi,ylo,zlo)
glVertex3f(xhi,yhi,zlo)
glVertex3f(xlo,yhi,zlo)
glEnd()
glBegin(GL_LINE_LOOP)
glVertex3f(xlo,ylo,zhi)
glVertex3f(xhi,ylo,zhi)
glVertex3f(xhi,yhi,zhi)
glVertex3f(xlo,yhi,zhi)
glEnd()
glBegin(GL_LINES)
glVertex3f(xlo,ylo,zlo)
glVertex3f(xlo,ylo,zhi)
glVertex3f(xhi,ylo,zlo)
glVertex3f(xhi,ylo,zhi)
glVertex3f(xhi,yhi,zlo)
glVertex3f(xhi,yhi,zhi)
glVertex3f(xlo,yhi,zlo)
glVertex3f(xlo,yhi,zhi)
glEnd()
# --------------------------------------------------------------------
def draw_axes(self):
xlo,ylo,zlo,xhi,yhi,zhi = self.boxdraw
delta = xhi-xlo
if yhi-ylo > delta: delta = yhi-ylo
if zhi-zlo > delta: delta = zhi-zlo
delta *= 0.1
glLineWidth(self.bxthick)
glBegin(GL_LINES)
glColor3f(1,0,0)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xhi-delta,ylo-delta,zlo-delta)
glColor3f(0,1,0)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xlo-delta,yhi-delta,zlo-delta)
glColor3f(0,0,1)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xlo-delta,ylo-delta,zhi-delta)
glEnd()
# --------------------------------------------------------------------
def save(self,file=None):
self.w.update() # force image on screen to be current before saving it
pstring = glReadPixels(0,0,self.xpixels,self.ypixels,
GL_RGBA,GL_UNSIGNED_BYTE)
snapshot = Image.fromstring("RGBA",(self.xpixels,self.ypixels),pstring)
snapshot = snapshot.transpose(Image.FLIP_TOP_BOTTOM)
if not file: file = self.file
snapshot.save(file + ".png")
# --------------------------------------------------------------------
def adef(self):
self.vizinfo.setcolors("atom",range(100),"loop")
self.vizinfo.setradii("atom",range(100),0.45)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def bdef(self):
self.vizinfo.setcolors("bond",range(100),"loop")
self.vizinfo.setradii("bond",range(100),0.25)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tdef(self):
self.vizinfo.setcolors("tri",range(100),"loop")
self.vizinfo.setfills("tri",range(100),0)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def ldef(self):
self.vizinfo.setcolors("line",range(100),"loop")
self.vizinfo.setradii("line",range(100),0.25)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def acol(self,atypes,colors):
self.vizinfo.setcolors("atom",atypes,colors)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def arad(self,atypes,radii):
self.vizinfo.setradii("atom",atypes,radii)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def bcol(self,btypes,colors):
self.vizinfo.setcolors("bond",btypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def brad(self,btypes,radii):
self.vizinfo.setradii("bond",btypes,radii)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tcol(self,ttypes,colors):
self.vizinfo.setcolors("tri",ttypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tfill(self,ttypes,flags):
self.vizinfo.setfills("tri",ttypes,flags)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def lcol(self,ltypes,colors):
self.vizinfo.setcolors("line",ltypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def lrad(self,ltypes,radii):
self.vizinfo.setradii("line",ltypes,radii)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
# derived class from Togl's Opengl
# overwrite redraw, translate, rotate, scale methods
# latter 3 are mouse-motion methods
class MyOpengl(Opengl):
def __init__(self, master, cnf={}, **kw):
args = (self,master,cnf)
Opengl.__init__(*args,**kw)
Opengl.autospin_allowed = 0
# redraw Opengl scene
# call parent redraw() method
def tkRedraw(self,*dummy):
if not self.initialised: return
self.tk.call(self._w,'makecurrent')
self.redraw(self)
self.tk.call(self._w,'swapbuffers')
# left button translate
# access parent xshift/yshift and call parent trans() method
def tkTranslate(self,event):
dx = event.x - self.xmouse
dy = event.y - self.ymouse
x = self.parent.xshift + dx
y = self.parent.yshift - dy
self.parent.shift(x,y)
self.tkRedraw()
self.tkRecordMouse(event)
# middle button trackball
# call parent mouse_rotate() method
def tkRotate(self,event):
self.parent.mouse_rotate(event.x,event.y,self.xmouse,self.ymouse)
self.tkRedraw()
self.tkRecordMouse(event)
# right button zoom
# access parent scale and call parent zoom() method
def tkScale(self,event):
scale = 1 - 0.01 * (event.y - self.ymouse)
if scale < 0.001: scale = 0.001
elif scale > 1000: scale = 1000
scale *= self.parent.scale
self.parent.zoom(scale)
self.tkRedraw()
self.tkRecordMouse(event)
# --------------------------------------------------------------------
# draw a line segment
def segment(p1,p2):
glVertex3f(p1[0],p1[1],p1[2])
glVertex3f(p2[0],p2[1],p2[2])
# --------------------------------------------------------------------
# normalize a 3-vector to unit length
def vecnorm(v):
length = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2])
return [v[0]/length,v[1]/length,v[2]/length]
# --------------------------------------------------------------------
# dot product of two 3-vectors
def vecdot(v1,v2):
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]
# --------------------------------------------------------------------
# cross product of two 3-vectors
def veccross(v1,v2):
v = [0,0,0]
v[0] = v1[1]*v2[2] - v1[2]*v2[1]
v[1] = v1[2]*v2[0] - v1[0]*v2[2]
v[2] = v1[0]*v2[1] - v1[1]*v2[0]
return v
# --------------------------------------------------------------------
# return characteristic distance of simulation domain = max dimension
def compute_distance(box):
distance = box[3]-box[0]
if box[4]-box[1] > distance: distance = box[4]-box[1]
if box[5]-box[2] > distance: distance = box[5]-box[2]
return distance
# --------------------------------------------------------------------
# return center of box as 3 vector
def compute_center(box):
c = [0,0,0]
c[0] = 0.5 * (box[0] + box[3])
c[1] = 0.5 * (box[1] + box[4])
c[2] = 0.5 * (box[2] + box[5])
return c
# --------------------------------------------------------------------
# return min of 2 values
def min2(a,b):
if b < a: a = b
return a
# --------------------------------------------------------------------
# return max of 2 values
def max2(a,b):
if b > a: a = b
return a
# --------------------------------------------------------------------
# return min of 3 values
def min3(a,b,c):
if b < a: a = b
if c < a: a = c
return a
# --------------------------------------------------------------------
# return max of 3 values
def max3(a,b,c):
if b > a: a = b
if c > a: a = c
return a

Event Timeline