Page MenuHomec4science

pair_edip_omp.cpp
No OneTemporary

File Metadata

Created
Thu, Sep 5, 14:31

pair_edip_omp.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include <math.h>
#include "pair_edip_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "suffix.h"
using namespace LAMMPS_NS;
#define GRIDDENSITY 8000
#define GRIDSTART 0.1
// max number of interaction per atom for f(Z) environment potential
#define leadDimInteractionList 64
/* ---------------------------------------------------------------------- */
PairEDIPOMP::PairEDIPOMP(LAMMPS *lmp) :
PairEDIP(lmp), ThrOMP(lmp, THR_PAIR)
{
suffix_flag |= Suffix::OMP;
respa_enable = 0;
}
/* ---------------------------------------------------------------------- */
void PairEDIPOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = vflag_fdotr = vflag_atom = 0;
const int nall = atom->nlocal + atom->nghost;
const int nthreads = comm->nthreads;
const int inum = list->inum;
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int ifrom, ito, tid;
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
ThrData *thr = fix->get_thr(tid);
thr->timer(Timer::START);
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
if (evflag) {
if (eflag) {
if (vflag_atom) eval<1,1,1>(ifrom, ito, thr);
else eval<1,1,0>(ifrom, ito, thr);
} else {
if (vflag_atom) eval<1,0,1>(ifrom, ito, thr);
else eval<1,0,0>(ifrom, ito, thr);
}
} else eval<0,0,0>(ifrom, ito, thr);
thr->timer(Timer::PAIR);
reduce_thr(this, eflag, vflag, thr);
} // end of omp parallel region
}
template <int EVFLAG, int EFLAG, int VFLAG_ATOM>
void PairEDIPOMP::eval(int iifrom, int iito, ThrData * const thr)
{
int i,j,k,ii,jnum;
int itype,jtype,ktype,ijparam,ikparam;
double xtmp,ytmp,ztmp,evdwl;
int *ilist,*jlist,*numneigh,**firstneigh;
register int preForceCoord_counter;
double invR_ij;
double invR_ik;
double directorCos_ij_x;
double directorCos_ij_y;
double directorCos_ij_z;
double directorCos_ik_x;
double directorCos_ik_y;
double directorCos_ik_z;
double cosTeta;
int interpolIDX;
double interpolTMP;
double interpolDeltaX;
double interpolY1;
double interpolY2;
double invRMinusCutoffA;
double sigmaInvRMinusCutoffA;
double gammInvRMinusCutoffA;
double cosTetaDiff;
double cosTetaDiffCosTetaDiff;
double cutoffFunction_ij;
double exp2B_ij;
double exp2BDerived_ij;
double pow2B_ij;
double pow2BDerived_ij;
double exp3B_ij;
double exp3BDerived_ij;
double exp3B_ik;
double exp3BDerived_ik;
double qFunction;
double tauFunction;
double tauFunctionDerived;
double expMinusBetaZeta_iZeta_i;
double qFunctionCosTetaDiffCosTetaDiff;
double expMinusQFunctionCosTetaDiffCosTetaDiff;
double zeta_i;
double zeta_iDerived;
double zeta_iDerivedInvR_ij;
double forceModCoord_factor;
double forceModCoord;
double forceModCoord_ij;
double forceMod2B;
double forceMod3B_factor1_ij;
double forceMod3B_factor2_ij;
double forceMod3B_factor2;
double forceMod3B_factor1_ik;
double forceMod3B_factor2_ik;
double potentia3B_factor;
double potential2B_factor;
const int tid = thr->get_tid();
double *pre_thrInvR_ij = preInvR_ij + tid * leadDimInteractionList;
double *pre_thrExp3B_ij = preExp3B_ij + tid * leadDimInteractionList;
double *pre_thrExp3BDerived_ij = preExp3BDerived_ij + tid * leadDimInteractionList;
double *pre_thrExp2B_ij = preExp2B_ij + tid * leadDimInteractionList;
double *pre_thrExp2BDerived_ij = preExp2BDerived_ij + tid * leadDimInteractionList;
double *pre_thrPow2B_ij = prePow2B_ij + tid * leadDimInteractionList;
double *pre_thrForceCoord = preForceCoord + tid * leadDimInteractionList;
const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0];
const int * _noalias const type = atom->type;
const int nlocal = atom->nlocal;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over full neighbor list of my atoms
for (ii = iifrom; ii < iito; ii++) {
zeta_i = 0.0;
int numForceCoordPairs = 0;
i = ilist[ii];
itype = map[type[i]];
xtmp = x[i].x;
ytmp = x[i].y;
ztmp = x[i].z;
jlist = firstneigh[i];
jnum = numneigh[i];
// pre-loop to compute environment coordination f(Z)
for (int neighbor_j = 0; neighbor_j < jnum; neighbor_j++) {
j = jlist[neighbor_j];
j &= NEIGHMASK;
double dr_ij[3], r_ij;
dr_ij[0] = xtmp - x[j].x;
dr_ij[1] = ytmp - x[j].y;
dr_ij[2] = ztmp - x[j].z;
r_ij = dr_ij[0]*dr_ij[0] + dr_ij[1]*dr_ij[1] + dr_ij[2]*dr_ij[2];
jtype = map[type[j]];
ijparam = elem2param[itype][jtype][jtype];
if (r_ij > params[ijparam].cutsq) continue;
r_ij = sqrt(r_ij);
invR_ij = 1.0 / r_ij;
pre_thrInvR_ij[neighbor_j] = invR_ij;
invRMinusCutoffA = 1.0 / (r_ij - cutoffA);
sigmaInvRMinusCutoffA = sigma * invRMinusCutoffA;
gammInvRMinusCutoffA = gamm * invRMinusCutoffA;
interpolDeltaX = r_ij - GRIDSTART;
interpolTMP = (interpolDeltaX * GRIDDENSITY);
interpolIDX = (int) interpolTMP;
interpolY1 = exp3B[interpolIDX];
interpolY2 = exp3B[interpolIDX+1];
exp3B_ij = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
exp3BDerived_ij = - exp3B_ij * gammInvRMinusCutoffA * invRMinusCutoffA;
pre_thrExp3B_ij[neighbor_j] = exp3B_ij;
pre_thrExp3BDerived_ij[neighbor_j] = exp3BDerived_ij;
interpolY1 = exp2B[interpolIDX];
interpolY2 = exp2B[interpolIDX+1];
exp2B_ij = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
exp2BDerived_ij = - exp2B_ij * sigmaInvRMinusCutoffA * invRMinusCutoffA;
pre_thrExp2B_ij[neighbor_j] = exp2B_ij;
pre_thrExp2BDerived_ij[neighbor_j] = exp2BDerived_ij;
interpolY1 = pow2B[interpolIDX];
interpolY2 = pow2B[interpolIDX+1];
pow2B_ij = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
pre_thrPow2B_ij[neighbor_j] = pow2B_ij;
// zeta and its derivative
if (r_ij < cutoffC) zeta_i += 1.0;
else {
interpolY1 = cutoffFunction[interpolIDX];
interpolY2 = cutoffFunction[interpolIDX+1];
cutoffFunction_ij = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
zeta_i += cutoffFunction_ij;
interpolY1 = cutoffFunctionDerived[interpolIDX];
interpolY2 = cutoffFunctionDerived[interpolIDX+1];
zeta_iDerived = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
zeta_iDerivedInvR_ij = zeta_iDerived * invR_ij;
preForceCoord_counter=numForceCoordPairs*5;
pre_thrForceCoord[preForceCoord_counter+0]=zeta_iDerivedInvR_ij;
pre_thrForceCoord[preForceCoord_counter+1]=dr_ij[0];
pre_thrForceCoord[preForceCoord_counter+2]=dr_ij[1];
pre_thrForceCoord[preForceCoord_counter+3]=dr_ij[2];
pre_thrForceCoord[preForceCoord_counter+4]=j;
numForceCoordPairs++;
}
}
// quantities depending on zeta_i
interpolDeltaX = zeta_i;
interpolTMP = (interpolDeltaX * GRIDDENSITY);
interpolIDX = (int) interpolTMP;
interpolY1 = expMinusBetaZeta_iZeta_iGrid[interpolIDX];
interpolY2 = expMinusBetaZeta_iZeta_iGrid[interpolIDX+1];
expMinusBetaZeta_iZeta_i = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
interpolY1 = qFunctionGrid[interpolIDX];
interpolY2 = qFunctionGrid[interpolIDX+1];
qFunction = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
interpolY1 = tauFunctionGrid[interpolIDX];
interpolY2 = tauFunctionGrid[interpolIDX+1];
tauFunction = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
interpolY1 = tauFunctionDerivedGrid[interpolIDX];
interpolY2 = tauFunctionDerivedGrid[interpolIDX+1];
tauFunctionDerived = interpolY1 + (interpolY2 - interpolY1) *
(interpolTMP-interpolIDX);
forceModCoord_factor = 2.0 * beta * zeta_i * expMinusBetaZeta_iZeta_i;
forceModCoord = 0.0;
// two-body interactions, skip half of them
for (int neighbor_j = 0; neighbor_j < jnum; neighbor_j++) {
double dr_ij[3], r_ij, f_ij[3];
j = jlist[neighbor_j];
j &= NEIGHMASK;
dr_ij[0] = x[j].x - xtmp;
dr_ij[1] = x[j].y - ytmp;
dr_ij[2] = x[j].z - ztmp;
r_ij = dr_ij[0]*dr_ij[0] + dr_ij[1]*dr_ij[1] + dr_ij[2]*dr_ij[2];
jtype = map[type[j]];
ijparam = elem2param[itype][jtype][jtype];
if (r_ij > params[ijparam].cutsq) continue;
r_ij = sqrt(r_ij);
invR_ij = pre_thrInvR_ij[neighbor_j];
pow2B_ij = pre_thrPow2B_ij[neighbor_j];
potential2B_factor = pow2B_ij - expMinusBetaZeta_iZeta_i;
exp2B_ij = pre_thrExp2B_ij[neighbor_j];
pow2BDerived_ij = - rho * invR_ij * pow2B_ij;
forceModCoord += (forceModCoord_factor*exp2B_ij);
exp2BDerived_ij = pre_thrExp2BDerived_ij[neighbor_j];
forceMod2B = exp2BDerived_ij * potential2B_factor +
exp2B_ij * pow2BDerived_ij;
directorCos_ij_x = invR_ij * dr_ij[0];
directorCos_ij_y = invR_ij * dr_ij[1];
directorCos_ij_z = invR_ij * dr_ij[2];
exp3B_ij = pre_thrExp3B_ij[neighbor_j];
exp3BDerived_ij = pre_thrExp3BDerived_ij[neighbor_j];
f_ij[0] = forceMod2B * directorCos_ij_x;
f_ij[1] = forceMod2B * directorCos_ij_y;
f_ij[2] = forceMod2B * directorCos_ij_z;
f[j].x -= f_ij[0];
f[j].y -= f_ij[1];
f[j].z -= f_ij[2];
f[i].x += f_ij[0];
f[i].y += f_ij[1];
f[i].z += f_ij[2];
// potential energy
evdwl = (exp2B_ij * potential2B_factor);
if (EVFLAG) ev_tally_thr(this,i, j, nlocal, /* newton_pair */ 1, evdwl, 0.0,
-forceMod2B*invR_ij, dr_ij[0], dr_ij[1], dr_ij[2],thr);
// three-body Forces
for (int neighbor_k = neighbor_j + 1; neighbor_k < jnum; neighbor_k++) {
double dr_ik[3], r_ik, f_ik[3];
k = jlist[neighbor_k];
k &= NEIGHMASK;
ktype = map[type[k]];
ikparam = elem2param[itype][ktype][ktype];
dr_ik[0] = x[k].x - xtmp;
dr_ik[1] = x[k].y - ytmp;
dr_ik[2] = x[k].z - ztmp;
r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2];
if (r_ik > params[ikparam].cutsq) continue;
r_ik = sqrt(r_ik);
invR_ik = pre_thrInvR_ij[neighbor_k];
directorCos_ik_x = invR_ik * dr_ik[0];
directorCos_ik_y = invR_ik * dr_ik[1];
directorCos_ik_z = invR_ik * dr_ik[2];
cosTeta = directorCos_ij_x * directorCos_ik_x +
directorCos_ij_y * directorCos_ik_y +
directorCos_ij_z * directorCos_ik_z;
cosTetaDiff = cosTeta + tauFunction;
cosTetaDiffCosTetaDiff = cosTetaDiff * cosTetaDiff;
qFunctionCosTetaDiffCosTetaDiff = cosTetaDiffCosTetaDiff * qFunction;
expMinusQFunctionCosTetaDiffCosTetaDiff =
exp(-qFunctionCosTetaDiffCosTetaDiff);
potentia3B_factor = lambda *
((1.0 - expMinusQFunctionCosTetaDiffCosTetaDiff) +
eta * qFunctionCosTetaDiffCosTetaDiff);
exp3B_ik = pre_thrExp3B_ij[neighbor_k];
exp3BDerived_ik = pre_thrExp3BDerived_ij[neighbor_k];
forceMod3B_factor1_ij = - exp3BDerived_ij * exp3B_ik *
potentia3B_factor;
forceMod3B_factor2 = 2.0 * lambda * exp3B_ij * exp3B_ik *
qFunction * cosTetaDiff *
(eta + expMinusQFunctionCosTetaDiffCosTetaDiff);
forceMod3B_factor2_ij = forceMod3B_factor2 * invR_ij;
f_ij[0] = forceMod3B_factor1_ij * directorCos_ij_x +
forceMod3B_factor2_ij *
(cosTeta * directorCos_ij_x - directorCos_ik_x);
f_ij[1] = forceMod3B_factor1_ij * directorCos_ij_y +
forceMod3B_factor2_ij *
(cosTeta * directorCos_ij_y - directorCos_ik_y);
f_ij[2] = forceMod3B_factor1_ij * directorCos_ij_z +
forceMod3B_factor2_ij *
(cosTeta * directorCos_ij_z - directorCos_ik_z);
forceMod3B_factor1_ik = - exp3BDerived_ik * exp3B_ij *
potentia3B_factor;
forceMod3B_factor2_ik = forceMod3B_factor2 * invR_ik;
f_ik[0] = forceMod3B_factor1_ik * directorCos_ik_x +
forceMod3B_factor2_ik *
(cosTeta * directorCos_ik_x - directorCos_ij_x);
f_ik[1] = forceMod3B_factor1_ik * directorCos_ik_y +
forceMod3B_factor2_ik *
(cosTeta * directorCos_ik_y - directorCos_ij_y);
f_ik[2] = forceMod3B_factor1_ik * directorCos_ik_z +
forceMod3B_factor2_ik *
(cosTeta * directorCos_ik_z - directorCos_ij_z);
forceModCoord += (forceMod3B_factor2 *
(tauFunctionDerived - 0.5 * mu * cosTetaDiff));
f[j].x += f_ij[0];
f[j].y += f_ij[1];
f[j].z += f_ij[2];
f[k].x += f_ik[0];
f[k].y += f_ik[1];
f[k].z += f_ik[2];
f[i].x -= f_ij[0] + f_ik[0];
f[i].y -= f_ij[1] + f_ik[1];
f[i].z -= f_ij[2] + f_ik[2];
// potential energy
evdwl = (exp3B_ij * exp3B_ik * potentia3B_factor);
if (evflag) ev_tally3_thr(this,i,j,k,evdwl,0.0,f_ij,f_ik,dr_ij,dr_ik,thr);
}
}
// forces due to environment coordination f(Z)
for (int idx = 0; idx < numForceCoordPairs; idx++) {
double dr_ij[3], f_ij[3];
preForceCoord_counter = idx * 5;
zeta_iDerivedInvR_ij=pre_thrForceCoord[preForceCoord_counter+0];
dr_ij[0]=pre_thrForceCoord[preForceCoord_counter+1];
dr_ij[1]=pre_thrForceCoord[preForceCoord_counter+2];
dr_ij[2]=pre_thrForceCoord[preForceCoord_counter+3];
j = static_cast<int> (pre_thrForceCoord[preForceCoord_counter+4]);
forceModCoord_ij = forceModCoord * zeta_iDerivedInvR_ij;
f_ij[0] = forceModCoord_ij * dr_ij[0];
f_ij[1] = forceModCoord_ij * dr_ij[1];
f_ij[2] = forceModCoord_ij * dr_ij[2];
f[j].x -= f_ij[0];
f[j].y -= f_ij[1];
f[j].z -= f_ij[2];
f[i].x += f_ij[0];
f[i].y += f_ij[1];
f[i].z += f_ij[2];
// potential energy
evdwl = 0.0;
if (EVFLAG) ev_tally_thr(this,i, j, nlocal, /* newton_pair */ 1, 0.0, 0.0,
forceModCoord_ij, dr_ij[0], dr_ij[1], dr_ij[2],thr);
}
}
}
/* ---------------------------------------------------------------------- */
double PairEDIPOMP::memory_usage()
{
double bytes = memory_usage_thr();
bytes += PairEDIP::memory_usage();
return bytes;
}

Event Timeline